Evaluate
\frac{625}{16}=39.0625
Factor
\frac{5 ^ {4}}{2 ^ {4}} = 39\frac{1}{16} = 39.0625
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)625}\\\end{array}
Use the 1^{st} digit 6 from dividend 625
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)625}\\\end{array}
Since 6 is less than 16, use the next digit 2 from dividend 625 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)625}\\\end{array}
Use the 2^{nd} digit 2 from dividend 625
\begin{array}{l}\phantom{16)}03\phantom{4}\\16\overline{)625}\\\phantom{16)}\underline{\phantom{}48\phantom{9}}\\\phantom{16)}14\\\end{array}
Find closest multiple of 16 to 62. We see that 3 \times 16 = 48 is the nearest. Now subtract 48 from 62 to get reminder 14. Add 3 to quotient.
\begin{array}{l}\phantom{16)}03\phantom{5}\\16\overline{)625}\\\phantom{16)}\underline{\phantom{}48\phantom{9}}\\\phantom{16)}145\\\end{array}
Use the 3^{rd} digit 5 from dividend 625
\begin{array}{l}\phantom{16)}039\phantom{6}\\16\overline{)625}\\\phantom{16)}\underline{\phantom{}48\phantom{9}}\\\phantom{16)}145\\\phantom{16)}\underline{\phantom{}144\phantom{}}\\\phantom{16)99}1\\\end{array}
Find closest multiple of 16 to 145. We see that 9 \times 16 = 144 is the nearest. Now subtract 144 from 145 to get reminder 1. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }1
Since 1 is less than 16, stop the division. The reminder is 1. The topmost line 039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}