Solve for a
a=\frac{15b+77}{62}
Solve for b
b=\frac{62a-77}{15}
Share
Copied to clipboard
\frac{62}{11}a=7+\frac{15}{11}b
Add \frac{15}{11}b to both sides.
\frac{62}{11}a=\frac{15b}{11}+7
The equation is in standard form.
\frac{\frac{62}{11}a}{\frac{62}{11}}=\frac{\frac{15b}{11}+7}{\frac{62}{11}}
Divide both sides of the equation by \frac{62}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{\frac{15b}{11}+7}{\frac{62}{11}}
Dividing by \frac{62}{11} undoes the multiplication by \frac{62}{11}.
a=\frac{15b+77}{62}
Divide 7+\frac{15b}{11} by \frac{62}{11} by multiplying 7+\frac{15b}{11} by the reciprocal of \frac{62}{11}.
-\frac{15}{11}b=7-\frac{62}{11}a
Subtract \frac{62}{11}a from both sides.
-\frac{15}{11}b=-\frac{62a}{11}+7
The equation is in standard form.
\frac{-\frac{15}{11}b}{-\frac{15}{11}}=\frac{-\frac{62a}{11}+7}{-\frac{15}{11}}
Divide both sides of the equation by -\frac{15}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{-\frac{62a}{11}+7}{-\frac{15}{11}}
Dividing by -\frac{15}{11} undoes the multiplication by -\frac{15}{11}.
b=\frac{62a-77}{15}
Divide 7-\frac{62a}{11} by -\frac{15}{11} by multiplying 7-\frac{62a}{11} by the reciprocal of -\frac{15}{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}