Evaluate
\frac{37\sqrt{21}}{192}\approx 0.883100525
Share
Copied to clipboard
\frac{603-\frac{1368}{10}}{\sqrt{554-\frac{38^{2}}{10}}\sqrt{810-\frac{36^{2}}{10}}}
Multiply 38 and 36 to get 1368.
\frac{603-\frac{684}{5}}{\sqrt{554-\frac{38^{2}}{10}}\sqrt{810-\frac{36^{2}}{10}}}
Reduce the fraction \frac{1368}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{3015}{5}-\frac{684}{5}}{\sqrt{554-\frac{38^{2}}{10}}\sqrt{810-\frac{36^{2}}{10}}}
Convert 603 to fraction \frac{3015}{5}.
\frac{\frac{3015-684}{5}}{\sqrt{554-\frac{38^{2}}{10}}\sqrt{810-\frac{36^{2}}{10}}}
Since \frac{3015}{5} and \frac{684}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2331}{5}}{\sqrt{554-\frac{38^{2}}{10}}\sqrt{810-\frac{36^{2}}{10}}}
Subtract 684 from 3015 to get 2331.
\frac{\frac{2331}{5}}{\sqrt{554-\frac{1444}{10}}\sqrt{810-\frac{36^{2}}{10}}}
Calculate 38 to the power of 2 and get 1444.
\frac{\frac{2331}{5}}{\sqrt{554-\frac{722}{5}}\sqrt{810-\frac{36^{2}}{10}}}
Reduce the fraction \frac{1444}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{2331}{5}}{\sqrt{\frac{2770}{5}-\frac{722}{5}}\sqrt{810-\frac{36^{2}}{10}}}
Convert 554 to fraction \frac{2770}{5}.
\frac{\frac{2331}{5}}{\sqrt{\frac{2770-722}{5}}\sqrt{810-\frac{36^{2}}{10}}}
Since \frac{2770}{5} and \frac{722}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2331}{5}}{\sqrt{\frac{2048}{5}}\sqrt{810-\frac{36^{2}}{10}}}
Subtract 722 from 2770 to get 2048.
\frac{\frac{2331}{5}}{\frac{\sqrt{2048}}{\sqrt{5}}\sqrt{810-\frac{36^{2}}{10}}}
Rewrite the square root of the division \sqrt{\frac{2048}{5}} as the division of square roots \frac{\sqrt{2048}}{\sqrt{5}}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{2}}{\sqrt{5}}\sqrt{810-\frac{36^{2}}{10}}}
Factor 2048=32^{2}\times 2. Rewrite the square root of the product \sqrt{32^{2}\times 2} as the product of square roots \sqrt{32^{2}}\sqrt{2}. Take the square root of 32^{2}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{810-\frac{36^{2}}{10}}}
Rationalize the denominator of \frac{32\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{2}\sqrt{5}}{5}\sqrt{810-\frac{36^{2}}{10}}}
The square of \sqrt{5} is 5.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\sqrt{810-\frac{36^{2}}{10}}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\sqrt{810-\frac{1296}{10}}}
Calculate 36 to the power of 2 and get 1296.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\sqrt{810-\frac{648}{5}}}
Reduce the fraction \frac{1296}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\sqrt{\frac{4050}{5}-\frac{648}{5}}}
Convert 810 to fraction \frac{4050}{5}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\sqrt{\frac{4050-648}{5}}}
Since \frac{4050}{5} and \frac{648}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\sqrt{\frac{3402}{5}}}
Subtract 648 from 4050 to get 3402.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\times \frac{\sqrt{3402}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{3402}{5}} as the division of square roots \frac{\sqrt{3402}}{\sqrt{5}}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\times \frac{9\sqrt{42}}{\sqrt{5}}}
Factor 3402=9^{2}\times 42. Rewrite the square root of the product \sqrt{9^{2}\times 42} as the product of square roots \sqrt{9^{2}}\sqrt{42}. Take the square root of 9^{2}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\times \frac{9\sqrt{42}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{9\sqrt{42}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\times \frac{9\sqrt{42}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}}{5}\times \frac{9\sqrt{210}}{5}}
To multiply \sqrt{42} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{2331}{5}}{\frac{32\sqrt{10}\times 9\sqrt{210}}{5\times 5}}
Multiply \frac{32\sqrt{10}}{5} times \frac{9\sqrt{210}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2331\times 5\times 5}{5\times 32\sqrt{10}\times 9\sqrt{210}}
Divide \frac{2331}{5} by \frac{32\sqrt{10}\times 9\sqrt{210}}{5\times 5} by multiplying \frac{2331}{5} by the reciprocal of \frac{32\sqrt{10}\times 9\sqrt{210}}{5\times 5}.
\frac{5\times 259}{32\sqrt{10}\sqrt{210}}
Cancel out 5\times 9 in both numerator and denominator.
\frac{5\times 259\sqrt{10}}{32\left(\sqrt{10}\right)^{2}\sqrt{210}}
Rationalize the denominator of \frac{5\times 259}{32\sqrt{10}\sqrt{210}} by multiplying numerator and denominator by \sqrt{10}.
\frac{5\times 259\sqrt{10}}{32\times 10\sqrt{210}}
The square of \sqrt{10} is 10.
\frac{1295\sqrt{10}}{32\times 10\sqrt{210}}
Multiply 5 and 259 to get 1295.
\frac{1295\sqrt{10}}{320\sqrt{210}}
Multiply 32 and 10 to get 320.
\frac{259\sqrt{10}}{64\sqrt{210}}
Cancel out 5 in both numerator and denominator.
\frac{259\sqrt{10}\sqrt{210}}{64\left(\sqrt{210}\right)^{2}}
Rationalize the denominator of \frac{259\sqrt{10}}{64\sqrt{210}} by multiplying numerator and denominator by \sqrt{210}.
\frac{259\sqrt{10}\sqrt{210}}{64\times 210}
The square of \sqrt{210} is 210.
\frac{259\sqrt{10}\sqrt{10}\sqrt{21}}{64\times 210}
Factor 210=10\times 21. Rewrite the square root of the product \sqrt{10\times 21} as the product of square roots \sqrt{10}\sqrt{21}.
\frac{259\times 10\sqrt{21}}{64\times 210}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{259\times 10\sqrt{21}}{13440}
Multiply 64 and 210 to get 13440.
\frac{2590\sqrt{21}}{13440}
Multiply 259 and 10 to get 2590.
\frac{37}{192}\sqrt{21}
Divide 2590\sqrt{21} by 13440 to get \frac{37}{192}\sqrt{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}