Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{5000)}\phantom{1}\\5000\overline{)6000}\\\end{array}
Use the 1^{st} digit 6 from dividend 6000
\begin{array}{l}\phantom{5000)}0\phantom{2}\\5000\overline{)6000}\\\end{array}
Since 6 is less than 5000, use the next digit 0 from dividend 6000 and add 0 to the quotient
\begin{array}{l}\phantom{5000)}0\phantom{3}\\5000\overline{)6000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 6000
\begin{array}{l}\phantom{5000)}00\phantom{4}\\5000\overline{)6000}\\\end{array}
Since 60 is less than 5000, use the next digit 0 from dividend 6000 and add 0 to the quotient
\begin{array}{l}\phantom{5000)}00\phantom{5}\\5000\overline{)6000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 6000
\begin{array}{l}\phantom{5000)}000\phantom{6}\\5000\overline{)6000}\\\end{array}
Since 600 is less than 5000, use the next digit 0 from dividend 6000 and add 0 to the quotient
\begin{array}{l}\phantom{5000)}000\phantom{7}\\5000\overline{)6000}\\\end{array}
Use the 4^{th} digit 0 from dividend 6000
\begin{array}{l}\phantom{5000)}0001\phantom{8}\\5000\overline{)6000}\\\phantom{5000)}\underline{\phantom{}5000\phantom{}}\\\phantom{5000)}1000\\\end{array}
Find closest multiple of 5000 to 6000. We see that 1 \times 5000 = 5000 is the nearest. Now subtract 5000 from 6000 to get reminder 1000. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1000
Since 1000 is less than 5000, stop the division. The reminder is 1000. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}