Solve for x
x=-40
x=50
Graph
Share
Copied to clipboard
x\times 600-\left(x-10\right)\times 600=3x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x-10,x.
x\times 600-\left(600x-6000\right)=3x\left(x-10\right)
Use the distributive property to multiply x-10 by 600.
x\times 600-600x+6000=3x\left(x-10\right)
To find the opposite of 600x-6000, find the opposite of each term.
6000=3x\left(x-10\right)
Combine x\times 600 and -600x to get 0.
6000=3x^{2}-30x
Use the distributive property to multiply 3x by x-10.
3x^{2}-30x=6000
Swap sides so that all variable terms are on the left hand side.
3x^{2}-30x-6000=0
Subtract 6000 from both sides.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 3\left(-6000\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -30 for b, and -6000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 3\left(-6000\right)}}{2\times 3}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-12\left(-6000\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-30\right)±\sqrt{900+72000}}{2\times 3}
Multiply -12 times -6000.
x=\frac{-\left(-30\right)±\sqrt{72900}}{2\times 3}
Add 900 to 72000.
x=\frac{-\left(-30\right)±270}{2\times 3}
Take the square root of 72900.
x=\frac{30±270}{2\times 3}
The opposite of -30 is 30.
x=\frac{30±270}{6}
Multiply 2 times 3.
x=\frac{300}{6}
Now solve the equation x=\frac{30±270}{6} when ± is plus. Add 30 to 270.
x=50
Divide 300 by 6.
x=-\frac{240}{6}
Now solve the equation x=\frac{30±270}{6} when ± is minus. Subtract 270 from 30.
x=-40
Divide -240 by 6.
x=50 x=-40
The equation is now solved.
x\times 600-\left(x-10\right)\times 600=3x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x-10,x.
x\times 600-\left(600x-6000\right)=3x\left(x-10\right)
Use the distributive property to multiply x-10 by 600.
x\times 600-600x+6000=3x\left(x-10\right)
To find the opposite of 600x-6000, find the opposite of each term.
6000=3x\left(x-10\right)
Combine x\times 600 and -600x to get 0.
6000=3x^{2}-30x
Use the distributive property to multiply 3x by x-10.
3x^{2}-30x=6000
Swap sides so that all variable terms are on the left hand side.
\frac{3x^{2}-30x}{3}=\frac{6000}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{30}{3}\right)x=\frac{6000}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-10x=\frac{6000}{3}
Divide -30 by 3.
x^{2}-10x=2000
Divide 6000 by 3.
x^{2}-10x+\left(-5\right)^{2}=2000+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=2000+25
Square -5.
x^{2}-10x+25=2025
Add 2000 to 25.
\left(x-5\right)^{2}=2025
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{2025}
Take the square root of both sides of the equation.
x-5=45 x-5=-45
Simplify.
x=50 x=-40
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}