Verify
false
Share
Copied to clipboard
\frac{59}{7\times 4}+\frac{60-2}{7\times 3}=\frac{25}{6}
Subtract 1 from 60 to get 59.
\frac{59}{28}+\frac{60-2}{7\times 3}=\frac{25}{6}
Multiply 7 and 4 to get 28.
\frac{59}{28}+\frac{58}{7\times 3}=\frac{25}{6}
Subtract 2 from 60 to get 58.
\frac{59}{28}+\frac{58}{21}=\frac{25}{6}
Multiply 7 and 3 to get 21.
\frac{177}{84}+\frac{232}{84}=\frac{25}{6}
Least common multiple of 28 and 21 is 84. Convert \frac{59}{28} and \frac{58}{21} to fractions with denominator 84.
\frac{177+232}{84}=\frac{25}{6}
Since \frac{177}{84} and \frac{232}{84} have the same denominator, add them by adding their numerators.
\frac{409}{84}=\frac{25}{6}
Add 177 and 232 to get 409.
\frac{409}{84}=\frac{350}{84}
Least common multiple of 84 and 6 is 84. Convert \frac{409}{84} and \frac{25}{6} to fractions with denominator 84.
\text{false}
Compare \frac{409}{84} and \frac{350}{84}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}