Solve for x
x=\frac{5}{18}\approx 0.277777778
Graph
Share
Copied to clipboard
\frac{2}{3}-\left(\frac{6}{90}+x\right)=\frac{29}{90}
Reduce the fraction \frac{60}{90} to lowest terms by extracting and canceling out 30.
\frac{2}{3}-\left(\frac{1}{15}+x\right)=\frac{29}{90}
Reduce the fraction \frac{6}{90} to lowest terms by extracting and canceling out 6.
\frac{2}{3}-\frac{1}{15}-x=\frac{29}{90}
To find the opposite of \frac{1}{15}+x, find the opposite of each term.
\frac{10}{15}-\frac{1}{15}-x=\frac{29}{90}
Least common multiple of 3 and 15 is 15. Convert \frac{2}{3} and \frac{1}{15} to fractions with denominator 15.
\frac{10-1}{15}-x=\frac{29}{90}
Since \frac{10}{15} and \frac{1}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{15}-x=\frac{29}{90}
Subtract 1 from 10 to get 9.
\frac{3}{5}-x=\frac{29}{90}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
-x=\frac{29}{90}-\frac{3}{5}
Subtract \frac{3}{5} from both sides.
-x=\frac{29}{90}-\frac{54}{90}
Least common multiple of 90 and 5 is 90. Convert \frac{29}{90} and \frac{3}{5} to fractions with denominator 90.
-x=\frac{29-54}{90}
Since \frac{29}{90} and \frac{54}{90} have the same denominator, subtract them by subtracting their numerators.
-x=\frac{-25}{90}
Subtract 54 from 29 to get -25.
-x=-\frac{5}{18}
Reduce the fraction \frac{-25}{90} to lowest terms by extracting and canceling out 5.
x=\frac{5}{18}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}