Solve for x
x=3
Graph
Share
Copied to clipboard
2\left(60+x\right)=7\left(5x+3\right)
Variable x cannot be equal to -\frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by 4\left(5x+3\right), the least common multiple of 10x+6,4.
120+2x=7\left(5x+3\right)
Use the distributive property to multiply 2 by 60+x.
120+2x=35x+21
Use the distributive property to multiply 7 by 5x+3.
120+2x-35x=21
Subtract 35x from both sides.
120-33x=21
Combine 2x and -35x to get -33x.
-33x=21-120
Subtract 120 from both sides.
-33x=-99
Subtract 120 from 21 to get -99.
x=\frac{-99}{-33}
Divide both sides by -33.
x=3
Divide -99 by -33 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}