Evaluate
\frac{851}{52200000000000000000000000000000}\approx 1.630268199 \cdot 10^{-29}
Factor
\frac{23 \cdot 37}{29 \cdot 2 ^ {30} \cdot 3 ^ {2} \cdot 5 ^ {29}} = 1.6302681992337167 \times 10^{-29}
Share
Copied to clipboard
\frac{6.67\times 10^{-2}\times 7.4}{\left(1740\times 10^{11}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -14 and 12 to get -2.
\frac{6.67\times \frac{1}{100}\times 7.4}{\left(1740\times 10^{11}\right)^{2}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{667}{10000}\times 7.4}{\left(1740\times 10^{11}\right)^{2}}
Multiply 6.67 and \frac{1}{100} to get \frac{667}{10000}.
\frac{\frac{24679}{50000}}{\left(1740\times 10^{11}\right)^{2}}
Multiply \frac{667}{10000} and 7.4 to get \frac{24679}{50000}.
\frac{\frac{24679}{50000}}{\left(1740\times 100000000000\right)^{2}}
Calculate 10 to the power of 11 and get 100000000000.
\frac{\frac{24679}{50000}}{174000000000000^{2}}
Multiply 1740 and 100000000000 to get 174000000000000.
\frac{\frac{24679}{50000}}{30276000000000000000000000000}
Calculate 174000000000000 to the power of 2 and get 30276000000000000000000000000.
\frac{24679}{50000\times 30276000000000000000000000000}
Express \frac{\frac{24679}{50000}}{30276000000000000000000000000} as a single fraction.
\frac{24679}{1513800000000000000000000000000000}
Multiply 50000 and 30276000000000000000000000000 to get 1513800000000000000000000000000000.
\frac{851}{52200000000000000000000000000000}
Reduce the fraction \frac{24679}{1513800000000000000000000000000000} to lowest terms by extracting and canceling out 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}