Evaluate
\frac{74203750000000000}{156250000000000000000000000000000000000000001}\approx 4.74904 \cdot 10^{-28}
Share
Copied to clipboard
\frac{6.67\times 10^{-29}\times 100\times 7.12}{100+6.4\times 10^{-43}}
To multiply powers of the same base, add their exponents. Add -11 and -18 to get -29.
\frac{6.67\times \frac{1}{100000000000000000000000000000}\times 100\times 7.12}{100+6.4\times 10^{-43}}
Calculate 10 to the power of -29 and get \frac{1}{100000000000000000000000000000}.
\frac{\frac{667}{10000000000000000000000000000000}\times 100\times 7.12}{100+6.4\times 10^{-43}}
Multiply 6.67 and \frac{1}{100000000000000000000000000000} to get \frac{667}{10000000000000000000000000000000}.
\frac{\frac{667}{100000000000000000000000000000}\times 7.12}{100+6.4\times 10^{-43}}
Multiply \frac{667}{10000000000000000000000000000000} and 100 to get \frac{667}{100000000000000000000000000000}.
\frac{\frac{59363}{1250000000000000000000000000000}}{100+6.4\times 10^{-43}}
Multiply \frac{667}{100000000000000000000000000000} and 7.12 to get \frac{59363}{1250000000000000000000000000000}.
\frac{\frac{59363}{1250000000000000000000000000000}}{100+6.4\times \frac{1}{10000000000000000000000000000000000000000000}}
Calculate 10 to the power of -43 and get \frac{1}{10000000000000000000000000000000000000000000}.
\frac{\frac{59363}{1250000000000000000000000000000}}{100+\frac{1}{1562500000000000000000000000000000000000000}}
Multiply 6.4 and \frac{1}{10000000000000000000000000000000000000000000} to get \frac{1}{1562500000000000000000000000000000000000000}.
\frac{\frac{59363}{1250000000000000000000000000000}}{\frac{156250000000000000000000000000000000000000001}{1562500000000000000000000000000000000000000}}
Add 100 and \frac{1}{1562500000000000000000000000000000000000000} to get \frac{156250000000000000000000000000000000000000001}{1562500000000000000000000000000000000000000}.
\frac{59363}{1250000000000000000000000000000}\times \frac{1562500000000000000000000000000000000000000}{156250000000000000000000000000000000000000001}
Divide \frac{59363}{1250000000000000000000000000000} by \frac{156250000000000000000000000000000000000000001}{1562500000000000000000000000000000000000000} by multiplying \frac{59363}{1250000000000000000000000000000} by the reciprocal of \frac{156250000000000000000000000000000000000000001}{1562500000000000000000000000000000000000000}.
\frac{74203750000000000}{156250000000000000000000000000000000000000001}
Multiply \frac{59363}{1250000000000000000000000000000} and \frac{1562500000000000000000000000000000000000000}{156250000000000000000000000000000000000000001} to get \frac{74203750000000000}{156250000000000000000000000000000000000000001}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}