Evaluate
\frac{3313m}{4000000000}
Differentiate w.r.t. m
0.00000082825
Share
Copied to clipboard
\frac{6.626\times 10^{-26}Js\times 3ms^{-1}}{0.24\times 10^{-18}J}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
\frac{6.626\times 10^{-26}J\times 3m}{0.24\times 10^{-18}J}
Multiply s and s^{-1} to get 1.
\frac{3\times 6.626\times 10^{-26}m}{0.24\times 10^{-18}}
Cancel out J in both numerator and denominator.
\frac{3\times 6.626m}{0.24\times 10^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{19.878m}{0.24\times 10^{8}}
Multiply 3 and 6.626 to get 19.878.
\frac{19.878m}{0.24\times 100000000}
Calculate 10 to the power of 8 and get 100000000.
\frac{19.878m}{24000000}
Multiply 0.24 and 100000000 to get 24000000.
0.00000082825m
Divide 19.878m by 24000000 to get 0.00000082825m.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{6.626\times 10^{-26}Js\times 3ms^{-1}}{0.24\times 10^{-18}J})
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{6.626\times 10^{-26}J\times 3m}{0.24\times 10^{-18}J})
Multiply s and s^{-1} to get 1.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3\times 6.626\times 10^{-26}m}{0.24\times 10^{-18}})
Cancel out J in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3\times 6.626m}{0.24\times 10^{8}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{19.878m}{0.24\times 10^{8}})
Multiply 3 and 6.626 to get 19.878.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{19.878m}{0.24\times 100000000})
Calculate 10 to the power of 8 and get 100000000.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{19.878m}{24000000})
Multiply 0.24 and 100000000 to get 24000000.
\frac{\mathrm{d}}{\mathrm{d}m}(0.00000082825m)
Divide 19.878m by 24000000 to get 0.00000082825m.
0.00000082825m^{1-1}
The derivative of ax^{n} is nax^{n-1}.
0.00000082825m^{0}
Subtract 1 from 1.
0.00000082825\times 1
For any term t except 0, t^{0}=1.
0.00000082825
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}