Evaluate
\frac{53\sqrt{4864206}}{11674094400000000000000000000000000}\approx 1.001287163 \cdot 10^{-29}
Share
Copied to clipboard
\frac{6.625\times 10^{-34}}{\sqrt{2\times 9.109\times 10^{-12}\times 1.602}}\times \frac{1}{\sqrt{150}}
To multiply powers of the same base, add their exponents. Add -31 and 19 to get -12.
\frac{6.625\times \frac{1}{10000000000000000000000000000000000}}{\sqrt{2\times 9.109\times 10^{-12}\times 1.602}}\times \frac{1}{\sqrt{150}}
Calculate 10 to the power of -34 and get \frac{1}{10000000000000000000000000000000000}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\sqrt{2\times 9.109\times 10^{-12}\times 1.602}}\times \frac{1}{\sqrt{150}}
Multiply 6.625 and \frac{1}{10000000000000000000000000000000000} to get \frac{53}{80000000000000000000000000000000000}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\sqrt{18.218\times 10^{-12}\times 1.602}}\times \frac{1}{\sqrt{150}}
Multiply 2 and 9.109 to get 18.218.
\frac{\frac{53}{80000000000000000000000000000000000}}{\sqrt{18.218\times \frac{1}{1000000000000}\times 1.602}}\times \frac{1}{\sqrt{150}}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\sqrt{\frac{9109}{500000000000000}\times 1.602}}\times \frac{1}{\sqrt{150}}
Multiply 18.218 and \frac{1}{1000000000000} to get \frac{9109}{500000000000000}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\sqrt{\frac{7296309}{250000000000000000}}}\times \frac{1}{\sqrt{150}}
Multiply \frac{9109}{500000000000000} and 1.602 to get \frac{7296309}{250000000000000000}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\frac{\sqrt{7296309}}{\sqrt{250000000000000000}}}\times \frac{1}{\sqrt{150}}
Rewrite the square root of the division \sqrt{\frac{7296309}{250000000000000000}} as the division of square roots \frac{\sqrt{7296309}}{\sqrt{250000000000000000}}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\frac{3\sqrt{810701}}{\sqrt{250000000000000000}}}\times \frac{1}{\sqrt{150}}
Factor 7296309=3^{2}\times 810701. Rewrite the square root of the product \sqrt{3^{2}\times 810701} as the product of square roots \sqrt{3^{2}}\sqrt{810701}. Take the square root of 3^{2}.
\frac{\frac{53}{80000000000000000000000000000000000}}{\frac{3\sqrt{810701}}{500000000}}\times \frac{1}{\sqrt{150}}
Calculate the square root of 250000000000000000 and get 500000000.
\frac{53\times 500000000}{80000000000000000000000000000000000\times 3\sqrt{810701}}\times \frac{1}{\sqrt{150}}
Divide \frac{53}{80000000000000000000000000000000000} by \frac{3\sqrt{810701}}{500000000} by multiplying \frac{53}{80000000000000000000000000000000000} by the reciprocal of \frac{3\sqrt{810701}}{500000000}.
\frac{53}{3\times 160000000000000000000000000\sqrt{810701}}\times \frac{1}{\sqrt{150}}
Cancel out 500000000 in both numerator and denominator.
\frac{53\sqrt{810701}}{3\times 160000000000000000000000000\left(\sqrt{810701}\right)^{2}}\times \frac{1}{\sqrt{150}}
Rationalize the denominator of \frac{53}{3\times 160000000000000000000000000\sqrt{810701}} by multiplying numerator and denominator by \sqrt{810701}.
\frac{53\sqrt{810701}}{3\times 160000000000000000000000000\times 810701}\times \frac{1}{\sqrt{150}}
The square of \sqrt{810701} is 810701.
\frac{53\sqrt{810701}}{480000000000000000000000000\times 810701}\times \frac{1}{\sqrt{150}}
Multiply 3 and 160000000000000000000000000 to get 480000000000000000000000000.
\frac{53\sqrt{810701}}{389136480000000000000000000000000}\times \frac{1}{\sqrt{150}}
Multiply 480000000000000000000000000 and 810701 to get 389136480000000000000000000000000.
\frac{53\sqrt{810701}}{389136480000000000000000000000000}\times \frac{1}{5\sqrt{6}}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{53\sqrt{810701}}{389136480000000000000000000000000}\times \frac{\sqrt{6}}{5\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{5\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{53\sqrt{810701}}{389136480000000000000000000000000}\times \frac{\sqrt{6}}{5\times 6}
The square of \sqrt{6} is 6.
\frac{53\sqrt{810701}}{389136480000000000000000000000000}\times \frac{\sqrt{6}}{30}
Multiply 5 and 6 to get 30.
\frac{53\sqrt{810701}\sqrt{6}}{389136480000000000000000000000000\times 30}
Multiply \frac{53\sqrt{810701}}{389136480000000000000000000000000} times \frac{\sqrt{6}}{30} by multiplying numerator times numerator and denominator times denominator.
\frac{53\sqrt{4864206}}{389136480000000000000000000000000\times 30}
To multiply \sqrt{810701} and \sqrt{6}, multiply the numbers under the square root.
\frac{53\sqrt{4864206}}{11674094400000000000000000000000000}
Multiply 389136480000000000000000000000000 and 30 to get 11674094400000000000000000000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}