Solve for T
T = \frac{2560 \sqrt{455}}{8281} \approx 6.5942116
T = -\frac{2560 \sqrt{455}}{8281} \approx -6.5942116
Quiz
Polynomial
5 problems similar to:
\frac { 6.37 ^ { 3 } } { 1 } = \frac { 22.4 ^ { 3 } } { T ^ { 2 } }
Share
Copied to clipboard
T^{2}\times 6.37^{3}=22.4^{3}
Variable T cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by T^{2}.
T^{2}\times 258.474853=22.4^{3}
Calculate 6.37 to the power of 3 and get 258.474853.
T^{2}\times 258.474853=11239.424
Calculate 22.4 to the power of 3 and get 11239.424.
T^{2}=\frac{11239.424}{258.474853}
Divide both sides by 258.474853.
T^{2}=\frac{11239424000}{258474853}
Expand \frac{11239.424}{258.474853} by multiplying both numerator and the denominator by 1000000.
T^{2}=\frac{32768000}{753571}
Reduce the fraction \frac{11239424000}{258474853} to lowest terms by extracting and canceling out 343.
T=\frac{2560\sqrt{455}}{8281} T=-\frac{2560\sqrt{455}}{8281}
Take the square root of both sides of the equation.
T^{2}\times 6.37^{3}=22.4^{3}
Variable T cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by T^{2}.
T^{2}\times 258.474853=22.4^{3}
Calculate 6.37 to the power of 3 and get 258.474853.
T^{2}\times 258.474853=11239.424
Calculate 22.4 to the power of 3 and get 11239.424.
T^{2}\times 258.474853-11239.424=0
Subtract 11239.424 from both sides.
258.474853T^{2}-11239.424=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
T=\frac{0±\sqrt{0^{2}-4\times 258.474853\left(-11239.424\right)}}{2\times 258.474853}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 258.474853 for a, 0 for b, and -11239.424 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
T=\frac{0±\sqrt{-4\times 258.474853\left(-11239.424\right)}}{2\times 258.474853}
Square 0.
T=\frac{0±\sqrt{-1033.899412\left(-11239.424\right)}}{2\times 258.474853}
Multiply -4 times 258.474853.
T=\frac{0±\sqrt{11620433.864818688}}{2\times 258.474853}
Multiply -1033.899412 times -11239.424 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
T=\frac{0±\frac{499408\sqrt{455}}{3125}}{2\times 258.474853}
Take the square root of 11620433.864818688.
T=\frac{0±\frac{499408\sqrt{455}}{3125}}{516.949706}
Multiply 2 times 258.474853.
T=\frac{2560\sqrt{455}}{8281}
Now solve the equation T=\frac{0±\frac{499408\sqrt{455}}{3125}}{516.949706} when ± is plus.
T=-\frac{2560\sqrt{455}}{8281}
Now solve the equation T=\frac{0±\frac{499408\sqrt{455}}{3125}}{516.949706} when ± is minus.
T=\frac{2560\sqrt{455}}{8281} T=-\frac{2560\sqrt{455}}{8281}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}