Evaluate
1.64
Factor
\frac{41}{5 ^ {2}} = 1\frac{16}{25} = 1.64
Share
Copied to clipboard
\frac{6.2\times 4\sqrt{2}+4\sqrt{8}}{2\sqrt{72}+\sqrt{128}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{24.8\sqrt{2}+4\sqrt{8}}{2\sqrt{72}+\sqrt{128}}
Multiply 6.2 and 4 to get 24.8.
\frac{24.8\sqrt{2}+4\times 2\sqrt{2}}{2\sqrt{72}+\sqrt{128}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{24.8\sqrt{2}+8\sqrt{2}}{2\sqrt{72}+\sqrt{128}}
Multiply 4 and 2 to get 8.
\frac{32.8\sqrt{2}}{2\sqrt{72}+\sqrt{128}}
Combine 24.8\sqrt{2} and 8\sqrt{2} to get 32.8\sqrt{2}.
\frac{32.8\sqrt{2}}{2\times 6\sqrt{2}+\sqrt{128}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{32.8\sqrt{2}}{12\sqrt{2}+\sqrt{128}}
Multiply 2 and 6 to get 12.
\frac{32.8\sqrt{2}}{12\sqrt{2}+8\sqrt{2}}
Factor 128=8^{2}\times 2. Rewrite the square root of the product \sqrt{8^{2}\times 2} as the product of square roots \sqrt{8^{2}}\sqrt{2}. Take the square root of 8^{2}.
\frac{32.8\sqrt{2}}{20\sqrt{2}}
Combine 12\sqrt{2} and 8\sqrt{2} to get 20\sqrt{2}.
\frac{32.8}{20}
Cancel out \sqrt{2} in both numerator and denominator.
\frac{328}{200}
Expand \frac{32.8}{20} by multiplying both numerator and the denominator by 10.
\frac{41}{25}
Reduce the fraction \frac{328}{200} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}