Evaluate
\frac{286273}{4320}\approx 66.266898148
Factor
\frac{13 \cdot 61 \cdot 19 ^ {2}}{5 \cdot 2 ^ {5} \cdot 3 ^ {3}} = 66\frac{1153}{4320} = 66.26689814814814
Share
Copied to clipboard
\frac{61}{20}\times \left(\frac{61}{12}\right)^{2}-0.2\times \left(\frac{61}{12}\right)^{3}+2.7\times \frac{61}{12}
Expand \frac{6.1}{2} by multiplying both numerator and the denominator by 10.
\frac{61}{20}\times \frac{3721}{144}-0.2\times \left(\frac{61}{12}\right)^{3}+2.7\times \frac{61}{12}
Calculate \frac{61}{12} to the power of 2 and get \frac{3721}{144}.
\frac{61\times 3721}{20\times 144}-0.2\times \left(\frac{61}{12}\right)^{3}+2.7\times \frac{61}{12}
Multiply \frac{61}{20} times \frac{3721}{144} by multiplying numerator times numerator and denominator times denominator.
\frac{226981}{2880}-0.2\times \left(\frac{61}{12}\right)^{3}+2.7\times \frac{61}{12}
Do the multiplications in the fraction \frac{61\times 3721}{20\times 144}.
\frac{226981}{2880}-0.2\times \frac{226981}{1728}+2.7\times \frac{61}{12}
Calculate \frac{61}{12} to the power of 3 and get \frac{226981}{1728}.
\frac{226981}{2880}-\frac{1}{5}\times \frac{226981}{1728}+2.7\times \frac{61}{12}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{226981}{2880}-\frac{1\times 226981}{5\times 1728}+2.7\times \frac{61}{12}
Multiply \frac{1}{5} times \frac{226981}{1728} by multiplying numerator times numerator and denominator times denominator.
\frac{226981}{2880}-\frac{226981}{8640}+2.7\times \frac{61}{12}
Do the multiplications in the fraction \frac{1\times 226981}{5\times 1728}.
\frac{680943}{8640}-\frac{226981}{8640}+2.7\times \frac{61}{12}
Least common multiple of 2880 and 8640 is 8640. Convert \frac{226981}{2880} and \frac{226981}{8640} to fractions with denominator 8640.
\frac{680943-226981}{8640}+2.7\times \frac{61}{12}
Since \frac{680943}{8640} and \frac{226981}{8640} have the same denominator, subtract them by subtracting their numerators.
\frac{453962}{8640}+2.7\times \frac{61}{12}
Subtract 226981 from 680943 to get 453962.
\frac{226981}{4320}+2.7\times \frac{61}{12}
Reduce the fraction \frac{453962}{8640} to lowest terms by extracting and canceling out 2.
\frac{226981}{4320}+\frac{27}{10}\times \frac{61}{12}
Convert decimal number 2.7 to fraction \frac{27}{10}.
\frac{226981}{4320}+\frac{27\times 61}{10\times 12}
Multiply \frac{27}{10} times \frac{61}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{226981}{4320}+\frac{1647}{120}
Do the multiplications in the fraction \frac{27\times 61}{10\times 12}.
\frac{226981}{4320}+\frac{549}{40}
Reduce the fraction \frac{1647}{120} to lowest terms by extracting and canceling out 3.
\frac{226981}{4320}+\frac{59292}{4320}
Least common multiple of 4320 and 40 is 4320. Convert \frac{226981}{4320} and \frac{549}{40} to fractions with denominator 4320.
\frac{226981+59292}{4320}
Since \frac{226981}{4320} and \frac{59292}{4320} have the same denominator, add them by adding their numerators.
\frac{286273}{4320}
Add 226981 and 59292 to get 286273.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}