\frac { 6,63 \cdot 10 ^ { - 34 } \cdot 3 \cdot 10 ^ { 8 } } { 0,42 \cdot 10 ^ { - 6 } } - 1,6 \cdot 10 ^ { - 19 } \cdot 0,75
Evaluate
\frac{99}{280000000000000000000}\approx 3,535714286 \cdot 10^{-19}
Factor
\frac{11 \cdot 3 ^ {2}}{7 \cdot 2 ^ {21} \cdot 5 ^ {19}} = 3.5357142857142856 \times 10^{-19}
Share
Copied to clipboard
\frac{6,63\times 10^{-26}\times 3}{0,42\times 10^{-6}}-1,6\times 10^{-19}\times 0,75
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
\frac{3\times 6,63}{0,42\times 10^{20}}-1,6\times 10^{-19}\times 0,75
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{19,89}{0,42\times 10^{20}}-1,6\times 10^{-19}\times 0,75
Multiply 3 and 6,63 to get 19,89.
\frac{19,89}{0,42\times 100000000000000000000}-1,6\times 10^{-19}\times 0,75
Calculate 10 to the power of 20 and get 100000000000000000000.
\frac{19,89}{42000000000000000000}-1,6\times 10^{-19}\times 0,75
Multiply 0,42 and 100000000000000000000 to get 42000000000000000000.
\frac{1989}{4200000000000000000000}-1,6\times 10^{-19}\times 0,75
Expand \frac{19,89}{42000000000000000000} by multiplying both numerator and the denominator by 100.
\frac{663}{1400000000000000000000}-1,6\times 10^{-19}\times 0,75
Reduce the fraction \frac{1989}{4200000000000000000000} to lowest terms by extracting and canceling out 3.
\frac{663}{1400000000000000000000}-1,6\times \frac{1}{10000000000000000000}\times 0,75
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{663}{1400000000000000000000}-\frac{1}{6250000000000000000}\times 0,75
Multiply 1,6 and \frac{1}{10000000000000000000} to get \frac{1}{6250000000000000000}.
\frac{663}{1400000000000000000000}-\frac{3}{25000000000000000000}
Multiply \frac{1}{6250000000000000000} and 0,75 to get \frac{3}{25000000000000000000}.
\frac{99}{280000000000000000000}
Subtract \frac{3}{25000000000000000000} from \frac{663}{1400000000000000000000} to get \frac{99}{280000000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}