Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(6y+3\right)\times \frac{3y+3}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Divide \frac{6y+3}{y} by \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}} by multiplying \frac{6y+3}{y} by the reciprocal of \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}}.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Express \left(6y+3\right)\times \frac{3y+3}{4y+2} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{y\left(4y^{2}-4\right)}{y^{2}}}
Express y\times \frac{4y^{2}-4}{y^{2}} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{4y^{2}-4}{y}}
Cancel out y in both numerator and denominator.
\frac{\left(6y+3\right)\left(3y+3\right)y}{\left(4y+2\right)\left(4y^{2}-4\right)}
Divide \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by \frac{4y^{2}-4}{y} by multiplying \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by the reciprocal of \frac{4y^{2}-4}{y}.
\frac{3^{2}y\left(y+1\right)\left(2y+1\right)}{2\times 4\left(y-1\right)\left(y+1\right)\left(2y+1\right)}
Factor the expressions that are not already factored.
\frac{3^{2}y}{2\times 4\left(y-1\right)}
Cancel out \left(y+1\right)\left(2y+1\right) in both numerator and denominator.
\frac{9y}{8y-8}
Expand the expression.
\frac{\left(6y+3\right)\times \frac{3y+3}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Divide \frac{6y+3}{y} by \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}} by multiplying \frac{6y+3}{y} by the reciprocal of \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}}.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Express \left(6y+3\right)\times \frac{3y+3}{4y+2} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{y\left(4y^{2}-4\right)}{y^{2}}}
Express y\times \frac{4y^{2}-4}{y^{2}} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{4y^{2}-4}{y}}
Cancel out y in both numerator and denominator.
\frac{\left(6y+3\right)\left(3y+3\right)y}{\left(4y+2\right)\left(4y^{2}-4\right)}
Divide \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by \frac{4y^{2}-4}{y} by multiplying \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by the reciprocal of \frac{4y^{2}-4}{y}.
\frac{3^{2}y\left(y+1\right)\left(2y+1\right)}{2\times 4\left(y-1\right)\left(y+1\right)\left(2y+1\right)}
Factor the expressions that are not already factored.
\frac{3^{2}y}{2\times 4\left(y-1\right)}
Cancel out \left(y+1\right)\left(2y+1\right) in both numerator and denominator.
\frac{9y}{8y-8}
Expand the expression.