Evaluate
\frac{9y}{8\left(y-1\right)}
Expand
\frac{9y}{8\left(y-1\right)}
Graph
Share
Copied to clipboard
\frac{\left(6y+3\right)\times \frac{3y+3}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Divide \frac{6y+3}{y} by \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}} by multiplying \frac{6y+3}{y} by the reciprocal of \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}}.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Express \left(6y+3\right)\times \frac{3y+3}{4y+2} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{y\left(4y^{2}-4\right)}{y^{2}}}
Express y\times \frac{4y^{2}-4}{y^{2}} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{4y^{2}-4}{y}}
Cancel out y in both numerator and denominator.
\frac{\left(6y+3\right)\left(3y+3\right)y}{\left(4y+2\right)\left(4y^{2}-4\right)}
Divide \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by \frac{4y^{2}-4}{y} by multiplying \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by the reciprocal of \frac{4y^{2}-4}{y}.
\frac{3^{2}y\left(y+1\right)\left(2y+1\right)}{2\times 4\left(y-1\right)\left(y+1\right)\left(2y+1\right)}
Factor the expressions that are not already factored.
\frac{3^{2}y}{2\times 4\left(y-1\right)}
Cancel out \left(y+1\right)\left(2y+1\right) in both numerator and denominator.
\frac{9y}{8y-8}
Expand the expression.
\frac{\left(6y+3\right)\times \frac{3y+3}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Divide \frac{6y+3}{y} by \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}} by multiplying \frac{6y+3}{y} by the reciprocal of \frac{\frac{4y^{2}-4}{y^{2}}}{\frac{3y+3}{4y+2}}.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{y\times \frac{4y^{2}-4}{y^{2}}}
Express \left(6y+3\right)\times \frac{3y+3}{4y+2} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{y\left(4y^{2}-4\right)}{y^{2}}}
Express y\times \frac{4y^{2}-4}{y^{2}} as a single fraction.
\frac{\frac{\left(6y+3\right)\left(3y+3\right)}{4y+2}}{\frac{4y^{2}-4}{y}}
Cancel out y in both numerator and denominator.
\frac{\left(6y+3\right)\left(3y+3\right)y}{\left(4y+2\right)\left(4y^{2}-4\right)}
Divide \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by \frac{4y^{2}-4}{y} by multiplying \frac{\left(6y+3\right)\left(3y+3\right)}{4y+2} by the reciprocal of \frac{4y^{2}-4}{y}.
\frac{3^{2}y\left(y+1\right)\left(2y+1\right)}{2\times 4\left(y-1\right)\left(y+1\right)\left(2y+1\right)}
Factor the expressions that are not already factored.
\frac{3^{2}y}{2\times 4\left(y-1\right)}
Cancel out \left(y+1\right)\left(2y+1\right) in both numerator and denominator.
\frac{9y}{8y-8}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}