Solve for x
x=-1
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
6x-4+5x\left(x-1\right)+\left(x-1\right)\left(-2\right)=3x\left(x-1\right)+x-1
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
6x-4+5x^{2}-5x+\left(x-1\right)\left(-2\right)=3x\left(x-1\right)+x-1
Use the distributive property to multiply 5x by x-1.
x-4+5x^{2}+\left(x-1\right)\left(-2\right)=3x\left(x-1\right)+x-1
Combine 6x and -5x to get x.
x-4+5x^{2}-2x+2=3x\left(x-1\right)+x-1
Use the distributive property to multiply x-1 by -2.
-x-4+5x^{2}+2=3x\left(x-1\right)+x-1
Combine x and -2x to get -x.
-x-2+5x^{2}=3x\left(x-1\right)+x-1
Add -4 and 2 to get -2.
-x-2+5x^{2}=3x^{2}-3x+x-1
Use the distributive property to multiply 3x by x-1.
-x-2+5x^{2}=3x^{2}-2x-1
Combine -3x and x to get -2x.
-x-2+5x^{2}-3x^{2}=-2x-1
Subtract 3x^{2} from both sides.
-x-2+2x^{2}=-2x-1
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
-x-2+2x^{2}+2x=-1
Add 2x to both sides.
x-2+2x^{2}=-1
Combine -x and 2x to get x.
x-2+2x^{2}+1=0
Add 1 to both sides.
x-1+2x^{2}=0
Add -2 and 1 to get -1.
2x^{2}+x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
Square 1.
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-1±\sqrt{1+8}}{2\times 2}
Multiply -8 times -1.
x=\frac{-1±\sqrt{9}}{2\times 2}
Add 1 to 8.
x=\frac{-1±3}{2\times 2}
Take the square root of 9.
x=\frac{-1±3}{4}
Multiply 2 times 2.
x=\frac{2}{4}
Now solve the equation x=\frac{-1±3}{4} when ± is plus. Add -1 to 3.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{4}
Now solve the equation x=\frac{-1±3}{4} when ± is minus. Subtract 3 from -1.
x=-1
Divide -4 by 4.
x=\frac{1}{2} x=-1
The equation is now solved.
6x-4+5x\left(x-1\right)+\left(x-1\right)\left(-2\right)=3x\left(x-1\right)+x-1
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
6x-4+5x^{2}-5x+\left(x-1\right)\left(-2\right)=3x\left(x-1\right)+x-1
Use the distributive property to multiply 5x by x-1.
x-4+5x^{2}+\left(x-1\right)\left(-2\right)=3x\left(x-1\right)+x-1
Combine 6x and -5x to get x.
x-4+5x^{2}-2x+2=3x\left(x-1\right)+x-1
Use the distributive property to multiply x-1 by -2.
-x-4+5x^{2}+2=3x\left(x-1\right)+x-1
Combine x and -2x to get -x.
-x-2+5x^{2}=3x\left(x-1\right)+x-1
Add -4 and 2 to get -2.
-x-2+5x^{2}=3x^{2}-3x+x-1
Use the distributive property to multiply 3x by x-1.
-x-2+5x^{2}=3x^{2}-2x-1
Combine -3x and x to get -2x.
-x-2+5x^{2}-3x^{2}=-2x-1
Subtract 3x^{2} from both sides.
-x-2+2x^{2}=-2x-1
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
-x-2+2x^{2}+2x=-1
Add 2x to both sides.
x-2+2x^{2}=-1
Combine -x and 2x to get x.
x+2x^{2}=-1+2
Add 2 to both sides.
x+2x^{2}=1
Add -1 and 2 to get 1.
2x^{2}+x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{1}{2}
Divide both sides by 2.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Simplify.
x=\frac{1}{2} x=-1
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}