Solve for x (complex solution)
x\in \mathrm{C}\setminus -6,6,0,-12,3
Solve for x
x\in \mathrm{R}\setminus 6,-6,0,3,-12
Graph
Share
Copied to clipboard
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Use the distributive property to multiply \frac{1}{6} by x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Use the distributive property to multiply \frac{1}{6}x+1 by 12+x and combine like terms.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Use the distributive property to multiply 3x+\frac{1}{6}x^{2}+12 by \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Express 3\times \frac{6x-36}{x^{2}-36} as a single fraction.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Multiply \frac{1}{6} times \frac{6x-36}{x^{2}-36} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Express 12\times \frac{6x-36}{x^{2}-36} as a single fraction.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Use the distributive property to multiply 3 by 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Express \frac{18x-108}{x^{2}-36}x as a single fraction.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Factor the expressions that are not already factored in \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Cancel out 6 in both numerator and denominator.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Express \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} as a single fraction.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Use the distributive property to multiply 12 by 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Factor x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Since \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} and \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Do the multiplications in \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Combine like terms in 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Factor x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Since \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} and \frac{72x-432}{\left(x-6\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Combine like terms in 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Subtract x from both sides.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Factor x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Since \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} and \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Do the multiplications in 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Combine like terms in 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Subtract 12 from both sides.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Since \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} and \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Do the multiplications in 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Combine like terms in 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right).
x\in \mathrm{C}
This is true for any x.
x\in \mathrm{C}\setminus -6,0,6
Variable x cannot be equal to any of the values -6,6,0.
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Use the distributive property to multiply \frac{1}{6} by x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Use the distributive property to multiply \frac{1}{6}x+1 by 12+x and combine like terms.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Use the distributive property to multiply 3x+\frac{1}{6}x^{2}+12 by \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Express 3\times \frac{6x-36}{x^{2}-36} as a single fraction.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Multiply \frac{1}{6} times \frac{6x-36}{x^{2}-36} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Express 12\times \frac{6x-36}{x^{2}-36} as a single fraction.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Use the distributive property to multiply 3 by 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Express \frac{18x-108}{x^{2}-36}x as a single fraction.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Factor the expressions that are not already factored in \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Cancel out 6 in both numerator and denominator.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Express \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} as a single fraction.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Use the distributive property to multiply 12 by 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Factor x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Since \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} and \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Do the multiplications in \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Combine like terms in 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Factor x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Since \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} and \frac{72x-432}{\left(x-6\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Combine like terms in 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Subtract x from both sides.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Factor x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Since \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} and \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Do the multiplications in 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Combine like terms in 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Subtract 12 from both sides.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Since \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} and \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Do the multiplications in 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Combine like terms in 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right).
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -6,0,6
Variable x cannot be equal to any of the values -6,6,0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}