Evaluate
\frac{3y}{2}-1
Expand
\frac{3y}{2}-1
Share
Copied to clipboard
-1+3x+\frac{3y-6x}{2}
Divide each term of 6x-2 by 2 to get -1+3x.
\frac{2\left(-1+3x\right)}{2}+\frac{3y-6x}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1+3x times \frac{2}{2}.
\frac{2\left(-1+3x\right)+3y-6x}{2}
Since \frac{2\left(-1+3x\right)}{2} and \frac{3y-6x}{2} have the same denominator, add them by adding their numerators.
\frac{-2+6x+3y-6x}{2}
Do the multiplications in 2\left(-1+3x\right)+3y-6x.
\frac{-2+3y}{2}
Combine like terms in -2+6x+3y-6x.
-1+3x+\frac{3y-6x}{2}
Divide each term of 6x-2 by 2 to get -1+3x.
\frac{2\left(-1+3x\right)}{2}+\frac{3y-6x}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1+3x times \frac{2}{2}.
\frac{2\left(-1+3x\right)+3y-6x}{2}
Since \frac{2\left(-1+3x\right)}{2} and \frac{3y-6x}{2} have the same denominator, add them by adding their numerators.
\frac{-2+6x+3y-6x}{2}
Do the multiplications in 2\left(-1+3x\right)+3y-6x.
\frac{-2+3y}{2}
Combine like terms in -2+6x+3y-6x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}