Solve for x
x=\frac{5y+1}{6}
y\neq 0
Solve for y
y=\frac{6x-1}{5}
x\neq \frac{1}{6}
Graph
Share
Copied to clipboard
6x-1+y\left(-3\right)=2y
Multiply both sides of the equation by y.
6x+y\left(-3\right)=2y+1
Add 1 to both sides.
6x=2y+1-y\left(-3\right)
Subtract y\left(-3\right) from both sides.
6x=5y+1
Combine 2y and -y\left(-3\right) to get 5y.
\frac{6x}{6}=\frac{5y+1}{6}
Divide both sides by 6.
x=\frac{5y+1}{6}
Dividing by 6 undoes the multiplication by 6.
6x-1+y\left(-3\right)=2y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
6x-1+y\left(-3\right)-2y=0
Subtract 2y from both sides.
6x-1-5y=0
Combine y\left(-3\right) and -2y to get -5y.
-1-5y=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-5y=-6x+1
Add 1 to both sides.
-5y=1-6x
The equation is in standard form.
\frac{-5y}{-5}=\frac{1-6x}{-5}
Divide both sides by -5.
y=\frac{1-6x}{-5}
Dividing by -5 undoes the multiplication by -5.
y=\frac{6x-1}{5}
Divide -6x+1 by -5.
y=\frac{6x-1}{5}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}