Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{6x}{\left(x-3\right)\left(x+4\right)}-\frac{x}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}+x-12. Factor x^{2}-16.
\frac{6x\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+4\right)}-\frac{x\left(x-3\right)}{\left(x-4\right)\left(x-3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+4\right) and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x-3\right)\left(x+4\right). Multiply \frac{6x}{\left(x-3\right)\left(x+4\right)} times \frac{x-4}{x-4}. Multiply \frac{x}{\left(x-4\right)\left(x+4\right)} times \frac{x-3}{x-3}.
\frac{6x\left(x-4\right)-x\left(x-3\right)}{\left(x-4\right)\left(x-3\right)\left(x+4\right)}
Since \frac{6x\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+4\right)} and \frac{x\left(x-3\right)}{\left(x-4\right)\left(x-3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}-24x-x^{2}+3x}{\left(x-4\right)\left(x-3\right)\left(x+4\right)}
Do the multiplications in 6x\left(x-4\right)-x\left(x-3\right).
\frac{5x^{2}-21x}{\left(x-4\right)\left(x-3\right)\left(x+4\right)}
Combine like terms in 6x^{2}-24x-x^{2}+3x.
\frac{5x^{2}-21x}{x^{3}-3x^{2}-16x+48}
Expand \left(x-4\right)\left(x-3\right)\left(x+4\right).