Solve for x
x=\frac{6\sqrt{37}}{37}\approx 0.986393924
x=-\frac{6\sqrt{37}}{37}\approx -0.986393924
Graph
Share
Copied to clipboard
6x\times 6x=\left(x+6\right)\left(6-x\right)
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by 6x\left(x+6\right), the least common multiple of x+6,6x.
\left(6x\right)^{2}=\left(x+6\right)\left(6-x\right)
Multiply 6x and 6x to get \left(6x\right)^{2}.
6^{2}x^{2}=\left(x+6\right)\left(6-x\right)
Expand \left(6x\right)^{2}.
36x^{2}=\left(x+6\right)\left(6-x\right)
Calculate 6 to the power of 2 and get 36.
36x^{2}=36-x^{2}
Consider \left(x+6\right)\left(6-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
36x^{2}+x^{2}=36
Add x^{2} to both sides.
37x^{2}=36
Combine 36x^{2} and x^{2} to get 37x^{2}.
x^{2}=\frac{36}{37}
Divide both sides by 37.
x=\frac{6\sqrt{37}}{37} x=-\frac{6\sqrt{37}}{37}
Take the square root of both sides of the equation.
6x\times 6x=\left(x+6\right)\left(6-x\right)
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by 6x\left(x+6\right), the least common multiple of x+6,6x.
\left(6x\right)^{2}=\left(x+6\right)\left(6-x\right)
Multiply 6x and 6x to get \left(6x\right)^{2}.
6^{2}x^{2}=\left(x+6\right)\left(6-x\right)
Expand \left(6x\right)^{2}.
36x^{2}=\left(x+6\right)\left(6-x\right)
Calculate 6 to the power of 2 and get 36.
36x^{2}=36-x^{2}
Consider \left(x+6\right)\left(6-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
36x^{2}-36=-x^{2}
Subtract 36 from both sides.
36x^{2}-36+x^{2}=0
Add x^{2} to both sides.
37x^{2}-36=0
Combine 36x^{2} and x^{2} to get 37x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 37\left(-36\right)}}{2\times 37}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 37 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 37\left(-36\right)}}{2\times 37}
Square 0.
x=\frac{0±\sqrt{-148\left(-36\right)}}{2\times 37}
Multiply -4 times 37.
x=\frac{0±\sqrt{5328}}{2\times 37}
Multiply -148 times -36.
x=\frac{0±12\sqrt{37}}{2\times 37}
Take the square root of 5328.
x=\frac{0±12\sqrt{37}}{74}
Multiply 2 times 37.
x=\frac{6\sqrt{37}}{37}
Now solve the equation x=\frac{0±12\sqrt{37}}{74} when ± is plus.
x=-\frac{6\sqrt{37}}{37}
Now solve the equation x=\frac{0±12\sqrt{37}}{74} when ± is minus.
x=\frac{6\sqrt{37}}{37} x=-\frac{6\sqrt{37}}{37}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}