Evaluate
21\left(x^{2}+xy+y^{2}\right)
Differentiate w.r.t. x
21\left(2x+y\right)
Share
Copied to clipboard
\frac{\frac{6x^{2}}{7y^{2}}\left(x^{2}y+xy^{2}+y^{3}\right)}{\frac{2}{49xy}x^{3}}
Divide \frac{\frac{6x^{2}}{7y^{2}}}{\frac{2}{49xy}} by \frac{x^{3}}{x^{2}y+xy^{2}+y^{3}} by multiplying \frac{\frac{6x^{2}}{7y^{2}}}{\frac{2}{49xy}} by the reciprocal of \frac{x^{3}}{x^{2}y+xy^{2}+y^{3}}.
\frac{\frac{6x^{2}\left(x^{2}y+xy^{2}+y^{3}\right)}{7y^{2}}}{\frac{2}{49xy}x^{3}}
Express \frac{6x^{2}}{7y^{2}}\left(x^{2}y+xy^{2}+y^{3}\right) as a single fraction.
\frac{\frac{6x^{2}\left(x^{2}y+xy^{2}+y^{3}\right)}{7y^{2}}}{\frac{2x^{3}}{49xy}}
Express \frac{2}{49xy}x^{3} as a single fraction.
\frac{\frac{6x^{2}\left(x^{2}y+xy^{2}+y^{3}\right)}{7y^{2}}}{\frac{2x^{2}}{49y}}
Cancel out x in both numerator and denominator.
\frac{6x^{2}\left(x^{2}y+xy^{2}+y^{3}\right)\times 49y}{7y^{2}\times 2x^{2}}
Divide \frac{6x^{2}\left(x^{2}y+xy^{2}+y^{3}\right)}{7y^{2}} by \frac{2x^{2}}{49y} by multiplying \frac{6x^{2}\left(x^{2}y+xy^{2}+y^{3}\right)}{7y^{2}} by the reciprocal of \frac{2x^{2}}{49y}.
\frac{3\times 7\left(xy^{2}+y^{3}+yx^{2}\right)}{y}
Cancel out 2\times 7yx^{2} in both numerator and denominator.
\frac{3\times 7y\left(x^{2}+xy+y^{2}\right)}{y}
Factor the expressions that are not already factored.
3\times 7\left(x^{2}+xy+y^{2}\right)
Cancel out y in both numerator and denominator.
21x^{2}+21xy+21y^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}