Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(6x^{2}+9\right)\left(x^{2}-81\right)}{\left(x-9\right)\left(4x^{2}+6\right)}
Divide \frac{6x^{2}+9}{x-9} by \frac{4x^{2}+6}{x^{2}-81} by multiplying \frac{6x^{2}+9}{x-9} by the reciprocal of \frac{4x^{2}+6}{x^{2}-81}.
\frac{3\left(x-9\right)\left(x+9\right)\left(2x^{2}+3\right)}{2\left(x-9\right)\left(2x^{2}+3\right)}
Factor the expressions that are not already factored.
\frac{3\left(x+9\right)}{2}
Cancel out \left(x-9\right)\left(2x^{2}+3\right) in both numerator and denominator.
\frac{3x+27}{2}
Expand the expression.
\frac{\left(6x^{2}+9\right)\left(x^{2}-81\right)}{\left(x-9\right)\left(4x^{2}+6\right)}
Divide \frac{6x^{2}+9}{x-9} by \frac{4x^{2}+6}{x^{2}-81} by multiplying \frac{6x^{2}+9}{x-9} by the reciprocal of \frac{4x^{2}+6}{x^{2}-81}.
\frac{3\left(x-9\right)\left(x+9\right)\left(2x^{2}+3\right)}{2\left(x-9\right)\left(2x^{2}+3\right)}
Factor the expressions that are not already factored.
\frac{3\left(x+9\right)}{2}
Cancel out \left(x-9\right)\left(2x^{2}+3\right) in both numerator and denominator.
\frac{3x+27}{2}
Expand the expression.