Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2x+1\right)\left(3x+2\right)}{\left(x+2\right)\left(3x+2\right)}-\frac{x^{2}+2x+1}{x^{2}-x-2}+\frac{x+10}{x^{2}-4}
Factor the expressions that are not already factored in \frac{6x^{2}+7x+2}{3x^{2}+8x+4}.
\frac{2x+1}{x+2}-\frac{x^{2}+2x+1}{x^{2}-x-2}+\frac{x+10}{x^{2}-4}
Cancel out 3x+2 in both numerator and denominator.
\frac{2x+1}{x+2}-\frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+1\right)}+\frac{x+10}{x^{2}-4}
Factor the expressions that are not already factored in \frac{x^{2}+2x+1}{x^{2}-x-2}.
\frac{2x+1}{x+2}-\frac{x+1}{x-2}+\frac{x+10}{x^{2}-4}
Cancel out x+1 in both numerator and denominator.
\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2x+1}{x+2} times \frac{x-2}{x-2}. Multiply \frac{x+1}{x-2} times \frac{x+2}{x+2}.
\frac{\left(2x+1\right)\left(x-2\right)-\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
Since \frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-4x+x-2-x^{2}-2x-x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
Do the multiplications in \left(2x+1\right)\left(x-2\right)-\left(x+1\right)\left(x+2\right).
\frac{x^{2}-6x-4}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
Combine like terms in 2x^{2}-4x+x-2-x^{2}-2x-x-2.
\frac{x^{2}-6x-4}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{x^{2}-6x-4+x+10}{\left(x-2\right)\left(x+2\right)}
Since \frac{x^{2}-6x-4}{\left(x-2\right)\left(x+2\right)} and \frac{x+10}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-6x-4+x+10.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}.
\frac{x-3}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{\left(2x+1\right)\left(3x+2\right)}{\left(x+2\right)\left(3x+2\right)}-\frac{x^{2}+2x+1}{x^{2}-x-2}+\frac{x+10}{x^{2}-4}
Factor the expressions that are not already factored in \frac{6x^{2}+7x+2}{3x^{2}+8x+4}.
\frac{2x+1}{x+2}-\frac{x^{2}+2x+1}{x^{2}-x-2}+\frac{x+10}{x^{2}-4}
Cancel out 3x+2 in both numerator and denominator.
\frac{2x+1}{x+2}-\frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+1\right)}+\frac{x+10}{x^{2}-4}
Factor the expressions that are not already factored in \frac{x^{2}+2x+1}{x^{2}-x-2}.
\frac{2x+1}{x+2}-\frac{x+1}{x-2}+\frac{x+10}{x^{2}-4}
Cancel out x+1 in both numerator and denominator.
\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2x+1}{x+2} times \frac{x-2}{x-2}. Multiply \frac{x+1}{x-2} times \frac{x+2}{x+2}.
\frac{\left(2x+1\right)\left(x-2\right)-\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
Since \frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-4x+x-2-x^{2}-2x-x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
Do the multiplications in \left(2x+1\right)\left(x-2\right)-\left(x+1\right)\left(x+2\right).
\frac{x^{2}-6x-4}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{x^{2}-4}
Combine like terms in 2x^{2}-4x+x-2-x^{2}-2x-x-2.
\frac{x^{2}-6x-4}{\left(x-2\right)\left(x+2\right)}+\frac{x+10}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{x^{2}-6x-4+x+10}{\left(x-2\right)\left(x+2\right)}
Since \frac{x^{2}-6x-4}{\left(x-2\right)\left(x+2\right)} and \frac{x+10}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-6x-4+x+10.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}.
\frac{x-3}{x+2}
Cancel out x-2 in both numerator and denominator.