Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+4x-32x+7=9\times 2
Multiply both sides by 2.
6x^{2}-28x+7=9\times 2
Combine 4x and -32x to get -28x.
6x^{2}-28x+7=18
Multiply 9 and 2 to get 18.
6x^{2}-28x+7-18=0
Subtract 18 from both sides.
6x^{2}-28x-11=0
Subtract 18 from 7 to get -11.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 6\left(-11\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -28 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 6\left(-11\right)}}{2\times 6}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-24\left(-11\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-28\right)±\sqrt{784+264}}{2\times 6}
Multiply -24 times -11.
x=\frac{-\left(-28\right)±\sqrt{1048}}{2\times 6}
Add 784 to 264.
x=\frac{-\left(-28\right)±2\sqrt{262}}{2\times 6}
Take the square root of 1048.
x=\frac{28±2\sqrt{262}}{2\times 6}
The opposite of -28 is 28.
x=\frac{28±2\sqrt{262}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{262}+28}{12}
Now solve the equation x=\frac{28±2\sqrt{262}}{12} when ± is plus. Add 28 to 2\sqrt{262}.
x=\frac{\sqrt{262}}{6}+\frac{7}{3}
Divide 28+2\sqrt{262} by 12.
x=\frac{28-2\sqrt{262}}{12}
Now solve the equation x=\frac{28±2\sqrt{262}}{12} when ± is minus. Subtract 2\sqrt{262} from 28.
x=-\frac{\sqrt{262}}{6}+\frac{7}{3}
Divide 28-2\sqrt{262} by 12.
x=\frac{\sqrt{262}}{6}+\frac{7}{3} x=-\frac{\sqrt{262}}{6}+\frac{7}{3}
The equation is now solved.
6x^{2}+4x-32x+7=9\times 2
Multiply both sides by 2.
6x^{2}-28x+7=9\times 2
Combine 4x and -32x to get -28x.
6x^{2}-28x+7=18
Multiply 9 and 2 to get 18.
6x^{2}-28x=18-7
Subtract 7 from both sides.
6x^{2}-28x=11
Subtract 7 from 18 to get 11.
\frac{6x^{2}-28x}{6}=\frac{11}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{28}{6}\right)x=\frac{11}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{14}{3}x=\frac{11}{6}
Reduce the fraction \frac{-28}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=\frac{11}{6}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{11}{6}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{131}{18}
Add \frac{11}{6} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{3}\right)^{2}=\frac{131}{18}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{131}{18}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{\sqrt{262}}{6} x-\frac{7}{3}=-\frac{\sqrt{262}}{6}
Simplify.
x=\frac{\sqrt{262}}{6}+\frac{7}{3} x=-\frac{\sqrt{262}}{6}+\frac{7}{3}
Add \frac{7}{3} to both sides of the equation.