Evaluate
\frac{xy}{5x+6y}
Expand
\frac{xy}{5x+6y}
Share
Copied to clipboard
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express -5\times \frac{1}{y} as a single fraction.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express \frac{-5}{y}x^{2} as a single fraction.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x times \frac{y}{y}.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Since \frac{-5x^{2}}{y} and \frac{6xy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
Express -25\times \frac{x^{2}}{y^{2}} as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{y^{2}}{y^{2}}.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
Since \frac{36y^{2}}{y^{2}} and \frac{-25x^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
Divide \frac{-5x^{2}+6xy}{y} by \frac{36y^{2}-25x^{2}}{y^{2}} by multiplying \frac{-5x^{2}+6xy}{y} by the reciprocal of \frac{36y^{2}-25x^{2}}{y^{2}}.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Cancel out y in both numerator and denominator.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Extract the negative sign in -5x+6y.
\frac{-xy}{-5x-6y}
Cancel out 5x-6y in both numerator and denominator.
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express -5\times \frac{1}{y} as a single fraction.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express \frac{-5}{y}x^{2} as a single fraction.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x times \frac{y}{y}.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Since \frac{-5x^{2}}{y} and \frac{6xy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
Express -25\times \frac{x^{2}}{y^{2}} as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{y^{2}}{y^{2}}.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
Since \frac{36y^{2}}{y^{2}} and \frac{-25x^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
Divide \frac{-5x^{2}+6xy}{y} by \frac{36y^{2}-25x^{2}}{y^{2}} by multiplying \frac{-5x^{2}+6xy}{y} by the reciprocal of \frac{36y^{2}-25x^{2}}{y^{2}}.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Cancel out y in both numerator and denominator.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Extract the negative sign in -5x+6y.
\frac{-xy}{-5x-6y}
Cancel out 5x-6y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}