Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express -5\times \frac{1}{y} as a single fraction.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express \frac{-5}{y}x^{2} as a single fraction.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x times \frac{y}{y}.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Since \frac{-5x^{2}}{y} and \frac{6xy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
Express -25\times \frac{x^{2}}{y^{2}} as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{y^{2}}{y^{2}}.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
Since \frac{36y^{2}}{y^{2}} and \frac{-25x^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
Divide \frac{-5x^{2}+6xy}{y} by \frac{36y^{2}-25x^{2}}{y^{2}} by multiplying \frac{-5x^{2}+6xy}{y} by the reciprocal of \frac{36y^{2}-25x^{2}}{y^{2}}.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Cancel out y in both numerator and denominator.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Extract the negative sign in -5x+6y.
\frac{-xy}{-5x-6y}
Cancel out 5x-6y in both numerator and denominator.
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express -5\times \frac{1}{y} as a single fraction.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Express \frac{-5}{y}x^{2} as a single fraction.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x times \frac{y}{y}.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Since \frac{-5x^{2}}{y} and \frac{6xy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
Express -25\times \frac{x^{2}}{y^{2}} as a single fraction.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{y^{2}}{y^{2}}.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
Since \frac{36y^{2}}{y^{2}} and \frac{-25x^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
Divide \frac{-5x^{2}+6xy}{y} by \frac{36y^{2}-25x^{2}}{y^{2}} by multiplying \frac{-5x^{2}+6xy}{y} by the reciprocal of \frac{36y^{2}-25x^{2}}{y^{2}}.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Cancel out y in both numerator and denominator.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Extract the negative sign in -5x+6y.
\frac{-xy}{-5x-6y}
Cancel out 5x-6y in both numerator and denominator.