Solve for a
a=9-3b+6x-bx
x\neq -3
Solve for b
b=-\frac{-6x+a-9}{x+3}
x\neq -3
Graph
Share
Copied to clipboard
6x+9=a+\left(x+3\right)b
Multiply both sides of the equation by \left(x+3\right)^{2}, the least common multiple of \left(x+3\right)^{2},x+3.
6x+9=a+xb+3b
Use the distributive property to multiply x+3 by b.
a+xb+3b=6x+9
Swap sides so that all variable terms are on the left hand side.
a+3b=6x+9-xb
Subtract xb from both sides.
a=6x+9-xb-3b
Subtract 3b from both sides.
6x+9=a+\left(x+3\right)b
Multiply both sides of the equation by \left(x+3\right)^{2}, the least common multiple of \left(x+3\right)^{2},x+3.
6x+9=a+xb+3b
Use the distributive property to multiply x+3 by b.
a+xb+3b=6x+9
Swap sides so that all variable terms are on the left hand side.
xb+3b=6x+9-a
Subtract a from both sides.
\left(x+3\right)b=6x+9-a
Combine all terms containing b.
\left(x+3\right)b=6x-a+9
The equation is in standard form.
\frac{\left(x+3\right)b}{x+3}=\frac{6x-a+9}{x+3}
Divide both sides by x+3.
b=\frac{6x-a+9}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}