Solve for x
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
\left(3x+4\right)\left(6x+5\right)-15\left(5x+2\right)=\left(9x+12\right)\left(2x+3\right)+15\left(3x+4\right)\left(-1\right)
Variable x cannot be equal to -\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 15\left(3x+4\right), the least common multiple of 15,3x+4,5.
18x^{2}+39x+20-15\left(5x+2\right)=\left(9x+12\right)\left(2x+3\right)+15\left(3x+4\right)\left(-1\right)
Use the distributive property to multiply 3x+4 by 6x+5 and combine like terms.
18x^{2}+39x+20-75x-30=\left(9x+12\right)\left(2x+3\right)+15\left(3x+4\right)\left(-1\right)
Use the distributive property to multiply -15 by 5x+2.
18x^{2}-36x+20-30=\left(9x+12\right)\left(2x+3\right)+15\left(3x+4\right)\left(-1\right)
Combine 39x and -75x to get -36x.
18x^{2}-36x-10=\left(9x+12\right)\left(2x+3\right)+15\left(3x+4\right)\left(-1\right)
Subtract 30 from 20 to get -10.
18x^{2}-36x-10=18x^{2}+51x+36+15\left(3x+4\right)\left(-1\right)
Use the distributive property to multiply 9x+12 by 2x+3 and combine like terms.
18x^{2}-36x-10=18x^{2}+51x+36-15\left(3x+4\right)
Multiply 15 and -1 to get -15.
18x^{2}-36x-10=18x^{2}+51x+36-45x-60
Use the distributive property to multiply -15 by 3x+4.
18x^{2}-36x-10=18x^{2}+6x+36-60
Combine 51x and -45x to get 6x.
18x^{2}-36x-10=18x^{2}+6x-24
Subtract 60 from 36 to get -24.
18x^{2}-36x-10-18x^{2}=6x-24
Subtract 18x^{2} from both sides.
-36x-10=6x-24
Combine 18x^{2} and -18x^{2} to get 0.
-36x-10-6x=-24
Subtract 6x from both sides.
-42x-10=-24
Combine -36x and -6x to get -42x.
-42x=-24+10
Add 10 to both sides.
-42x=-14
Add -24 and 10 to get -14.
x=\frac{-14}{-42}
Divide both sides by -42.
x=\frac{1}{3}
Reduce the fraction \frac{-14}{-42} to lowest terms by extracting and canceling out -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}