Solve for x
x\leq \frac{27}{14}
Graph
Share
Copied to clipboard
2\left(6x+3\right)-10\leq 20-\left(2x-3\right)
Multiply both sides of the equation by 10, the least common multiple of 5,10. Since 10 is positive, the inequality direction remains the same.
12x+6-10\leq 20-\left(2x-3\right)
Use the distributive property to multiply 2 by 6x+3.
12x-4\leq 20-\left(2x-3\right)
Subtract 10 from 6 to get -4.
12x-4\leq 20-2x-\left(-3\right)
To find the opposite of 2x-3, find the opposite of each term.
12x-4\leq 20-2x+3
The opposite of -3 is 3.
12x-4\leq 23-2x
Add 20 and 3 to get 23.
12x-4+2x\leq 23
Add 2x to both sides.
14x-4\leq 23
Combine 12x and 2x to get 14x.
14x\leq 23+4
Add 4 to both sides.
14x\leq 27
Add 23 and 4 to get 27.
x\leq \frac{27}{14}
Divide both sides by 14. Since 14 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}