Solve for x
x\in (-\infty,\frac{2}{3})\cup [\frac{4}{3},\infty)
Graph
Share
Copied to clipboard
\frac{6x+2}{3x-2}-\frac{5\left(3x-2\right)}{3x-2}\leq 0
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{3x-2}{3x-2}.
\frac{6x+2-5\left(3x-2\right)}{3x-2}\leq 0
Since \frac{6x+2}{3x-2} and \frac{5\left(3x-2\right)}{3x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{6x+2-15x+10}{3x-2}\leq 0
Do the multiplications in 6x+2-5\left(3x-2\right).
\frac{-9x+12}{3x-2}\leq 0
Combine like terms in 6x+2-15x+10.
12-9x\geq 0 3x-2<0
For the quotient to be ≤0, one of the values 12-9x and 3x-2 has to be ≥0, the other has to be ≤0, and 3x-2 cannot be zero. Consider the case when 12-9x\geq 0 and 3x-2 is negative.
x<\frac{2}{3}
The solution satisfying both inequalities is x<\frac{2}{3}.
12-9x\leq 0 3x-2>0
Consider the case when 12-9x\leq 0 and 3x-2 is positive.
x\geq \frac{4}{3}
The solution satisfying both inequalities is x\geq \frac{4}{3}.
x<\frac{2}{3}\text{; }x\geq \frac{4}{3}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}