Evaluate
\frac{5v^{2}-3v-19}{\left(v-7\right)\left(v^{2}-4\right)}
Expand
\frac{5v^{2}-3v-19}{\left(v-7\right)\left(v^{2}-4\right)}
Share
Copied to clipboard
\frac{6v-1}{\left(v-7\right)\left(v+2\right)}-\frac{v-3}{\left(v-2\right)\left(v+2\right)}
Factor v^{2}-5v-14. Factor v^{2}-4.
\frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}-\frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-7\right)\left(v+2\right) and \left(v-2\right)\left(v+2\right) is \left(v-7\right)\left(v-2\right)\left(v+2\right). Multiply \frac{6v-1}{\left(v-7\right)\left(v+2\right)} times \frac{v-2}{v-2}. Multiply \frac{v-3}{\left(v-2\right)\left(v+2\right)} times \frac{v-7}{v-7}.
\frac{\left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Since \frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} and \frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6v^{2}-12v-v+2-v^{2}+7v+3v-21}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Do the multiplications in \left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right).
\frac{5v^{2}-3v-19}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Combine like terms in 6v^{2}-12v-v+2-v^{2}+7v+3v-21.
\frac{5v^{2}-3v-19}{v^{3}-7v^{2}-4v+28}
Expand \left(v-7\right)\left(v-2\right)\left(v+2\right).
\frac{6v-1}{\left(v-7\right)\left(v+2\right)}-\frac{v-3}{\left(v-2\right)\left(v+2\right)}
Factor v^{2}-5v-14. Factor v^{2}-4.
\frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}-\frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-7\right)\left(v+2\right) and \left(v-2\right)\left(v+2\right) is \left(v-7\right)\left(v-2\right)\left(v+2\right). Multiply \frac{6v-1}{\left(v-7\right)\left(v+2\right)} times \frac{v-2}{v-2}. Multiply \frac{v-3}{\left(v-2\right)\left(v+2\right)} times \frac{v-7}{v-7}.
\frac{\left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Since \frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} and \frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6v^{2}-12v-v+2-v^{2}+7v+3v-21}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Do the multiplications in \left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right).
\frac{5v^{2}-3v-19}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Combine like terms in 6v^{2}-12v-v+2-v^{2}+7v+3v-21.
\frac{5v^{2}-3v-19}{v^{3}-7v^{2}-4v+28}
Expand \left(v-7\right)\left(v-2\right)\left(v+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}