Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{6v-1}{\left(v-7\right)\left(v+2\right)}-\frac{v-3}{\left(v-2\right)\left(v+2\right)}
Factor v^{2}-5v-14. Factor v^{2}-4.
\frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}-\frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-7\right)\left(v+2\right) and \left(v-2\right)\left(v+2\right) is \left(v-7\right)\left(v-2\right)\left(v+2\right). Multiply \frac{6v-1}{\left(v-7\right)\left(v+2\right)} times \frac{v-2}{v-2}. Multiply \frac{v-3}{\left(v-2\right)\left(v+2\right)} times \frac{v-7}{v-7}.
\frac{\left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Since \frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} and \frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6v^{2}-12v-v+2-v^{2}+7v+3v-21}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Do the multiplications in \left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right).
\frac{5v^{2}-3v-19}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Combine like terms in 6v^{2}-12v-v+2-v^{2}+7v+3v-21.
\frac{5v^{2}-3v-19}{v^{3}-7v^{2}-4v+28}
Expand \left(v-7\right)\left(v-2\right)\left(v+2\right).
\frac{6v-1}{\left(v-7\right)\left(v+2\right)}-\frac{v-3}{\left(v-2\right)\left(v+2\right)}
Factor v^{2}-5v-14. Factor v^{2}-4.
\frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}-\frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-7\right)\left(v+2\right) and \left(v-2\right)\left(v+2\right) is \left(v-7\right)\left(v-2\right)\left(v+2\right). Multiply \frac{6v-1}{\left(v-7\right)\left(v+2\right)} times \frac{v-2}{v-2}. Multiply \frac{v-3}{\left(v-2\right)\left(v+2\right)} times \frac{v-7}{v-7}.
\frac{\left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Since \frac{\left(6v-1\right)\left(v-2\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} and \frac{\left(v-3\right)\left(v-7\right)}{\left(v-7\right)\left(v-2\right)\left(v+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6v^{2}-12v-v+2-v^{2}+7v+3v-21}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Do the multiplications in \left(6v-1\right)\left(v-2\right)-\left(v-3\right)\left(v-7\right).
\frac{5v^{2}-3v-19}{\left(v-7\right)\left(v-2\right)\left(v+2\right)}
Combine like terms in 6v^{2}-12v-v+2-v^{2}+7v+3v-21.
\frac{5v^{2}-3v-19}{v^{3}-7v^{2}-4v+28}
Expand \left(v-7\right)\left(v-2\right)\left(v+2\right).