Evaluate
\frac{3}{4v^{3}}
Expand
\frac{3}{4v^{3}}
Share
Copied to clipboard
\frac{6v}{4\left(v-4\right)v^{3}}-\frac{3v+12}{4v^{4}-16v^{3}}
Factor the expressions that are not already factored in \frac{6v}{4v^{4}-16v^{3}}.
\frac{3}{2\left(v-4\right)v^{2}}-\frac{3v+12}{4v^{4}-16v^{3}}
Cancel out 2v in both numerator and denominator.
\frac{3}{2\left(v-4\right)v^{2}}-\frac{3v+12}{4\left(v-4\right)v^{3}}
Factor 4v^{4}-16v^{3}.
\frac{3\times 2v}{4\left(v-4\right)v^{3}}-\frac{3v+12}{4\left(v-4\right)v^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(v-4\right)v^{2} and 4\left(v-4\right)v^{3} is 4\left(v-4\right)v^{3}. Multiply \frac{3}{2\left(v-4\right)v^{2}} times \frac{2v}{2v}.
\frac{3\times 2v-\left(3v+12\right)}{4\left(v-4\right)v^{3}}
Since \frac{3\times 2v}{4\left(v-4\right)v^{3}} and \frac{3v+12}{4\left(v-4\right)v^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{6v-3v-12}{4\left(v-4\right)v^{3}}
Do the multiplications in 3\times 2v-\left(3v+12\right).
\frac{3v-12}{4\left(v-4\right)v^{3}}
Combine like terms in 6v-3v-12.
\frac{3\left(v-4\right)}{4\left(v-4\right)v^{3}}
Factor the expressions that are not already factored in \frac{3v-12}{4\left(v-4\right)v^{3}}.
\frac{3}{4v^{3}}
Cancel out v-4 in both numerator and denominator.
\frac{6v}{4\left(v-4\right)v^{3}}-\frac{3v+12}{4v^{4}-16v^{3}}
Factor the expressions that are not already factored in \frac{6v}{4v^{4}-16v^{3}}.
\frac{3}{2\left(v-4\right)v^{2}}-\frac{3v+12}{4v^{4}-16v^{3}}
Cancel out 2v in both numerator and denominator.
\frac{3}{2\left(v-4\right)v^{2}}-\frac{3v+12}{4\left(v-4\right)v^{3}}
Factor 4v^{4}-16v^{3}.
\frac{3\times 2v}{4\left(v-4\right)v^{3}}-\frac{3v+12}{4\left(v-4\right)v^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(v-4\right)v^{2} and 4\left(v-4\right)v^{3} is 4\left(v-4\right)v^{3}. Multiply \frac{3}{2\left(v-4\right)v^{2}} times \frac{2v}{2v}.
\frac{3\times 2v-\left(3v+12\right)}{4\left(v-4\right)v^{3}}
Since \frac{3\times 2v}{4\left(v-4\right)v^{3}} and \frac{3v+12}{4\left(v-4\right)v^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{6v-3v-12}{4\left(v-4\right)v^{3}}
Do the multiplications in 3\times 2v-\left(3v+12\right).
\frac{3v-12}{4\left(v-4\right)v^{3}}
Combine like terms in 6v-3v-12.
\frac{3\left(v-4\right)}{4\left(v-4\right)v^{3}}
Factor the expressions that are not already factored in \frac{3v-12}{4\left(v-4\right)v^{3}}.
\frac{3}{4v^{3}}
Cancel out v-4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}