Solve for p
p\in \left(-6,\frac{23}{3}\right)
Share
Copied to clipboard
p+6>0 p+6<0
Denominator p+6 cannot be zero since division by zero is not defined. There are two cases.
p>-6
Consider the case when p+6 is positive. Move 6 to the right hand side.
6p-5<3\left(p+6\right)
The initial inequality does not change the direction when multiplied by p+6 for p+6>0.
6p-5<3p+18
Multiply out the right hand side.
6p-3p<5+18
Move the terms containing p to the left hand side and all other terms to the right hand side.
3p<23
Combine like terms.
p<\frac{23}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
p\in \left(-6,\frac{23}{3}\right)
Consider condition p>-6 specified above.
p<-6
Now consider the case when p+6 is negative. Move 6 to the right hand side.
6p-5>3\left(p+6\right)
The initial inequality changes the direction when multiplied by p+6 for p+6<0.
6p-5>3p+18
Multiply out the right hand side.
6p-3p>5+18
Move the terms containing p to the left hand side and all other terms to the right hand side.
3p>23
Combine like terms.
p>\frac{23}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
p\in \emptyset
Consider condition p<-6 specified above.
p\in \left(-6,\frac{23}{3}\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}