Solve for m
m=\frac{1}{3\left(p+2\right)}
p\neq -2
Solve for p
p=-2+\frac{1}{3m}
m\neq 0
Share
Copied to clipboard
6m-1=-3pm
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by m.
6m-1+3pm=0
Add 3pm to both sides.
6m+3pm=1
Add 1 to both sides. Anything plus zero gives itself.
\left(6+3p\right)m=1
Combine all terms containing m.
\left(3p+6\right)m=1
The equation is in standard form.
\frac{\left(3p+6\right)m}{3p+6}=\frac{1}{3p+6}
Divide both sides by 6+3p.
m=\frac{1}{3p+6}
Dividing by 6+3p undoes the multiplication by 6+3p.
m=\frac{1}{3\left(p+2\right)}
Divide 1 by 6+3p.
m=\frac{1}{3\left(p+2\right)}\text{, }m\neq 0
Variable m cannot be equal to 0.
6m-1=-3pm
Multiply both sides of the equation by m.
-3pm=6m-1
Swap sides so that all variable terms are on the left hand side.
\left(-3m\right)p=6m-1
The equation is in standard form.
\frac{\left(-3m\right)p}{-3m}=\frac{6m-1}{-3m}
Divide both sides by -3m.
p=\frac{6m-1}{-3m}
Dividing by -3m undoes the multiplication by -3m.
p=-2+\frac{1}{3m}
Divide 6m-1 by -3m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}