Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7+3i.
\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6i\left(7+3i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6i\times 7+6\times 3i^{2}}{58}
Multiply 6i times 7+3i.
\frac{6i\times 7+6\times 3\left(-1\right)}{58}
By definition, i^{2} is -1.
\frac{-18+42i}{58}
Do the multiplications in 6i\times 7+6\times 3\left(-1\right). Reorder the terms.
-\frac{9}{29}+\frac{21}{29}i
Divide -18+42i by 58 to get -\frac{9}{29}+\frac{21}{29}i.
Re(\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)})
Multiply both numerator and denominator of \frac{6i}{7-3i} by the complex conjugate of the denominator, 7+3i.
Re(\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6i\left(7+3i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6i\times 7+6\times 3i^{2}}{58})
Multiply 6i times 7+3i.
Re(\frac{6i\times 7+6\times 3\left(-1\right)}{58})
By definition, i^{2} is -1.
Re(\frac{-18+42i}{58})
Do the multiplications in 6i\times 7+6\times 3\left(-1\right). Reorder the terms.
Re(-\frac{9}{29}+\frac{21}{29}i)
Divide -18+42i by 58 to get -\frac{9}{29}+\frac{21}{29}i.
-\frac{9}{29}
The real part of -\frac{9}{29}+\frac{21}{29}i is -\frac{9}{29}.