Evaluate
\frac{1}{4}+\frac{1}{24d}
Expand
\frac{1}{4}+\frac{1}{24d}
Share
Copied to clipboard
\frac{3\left(6d-5\right)}{24d}-\frac{4\left(3d-4\right)}{24d}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8d and 6d is 24d. Multiply \frac{6d-5}{8d} times \frac{3}{3}. Multiply \frac{3d-4}{6d} times \frac{4}{4}.
\frac{3\left(6d-5\right)-4\left(3d-4\right)}{24d}
Since \frac{3\left(6d-5\right)}{24d} and \frac{4\left(3d-4\right)}{24d} have the same denominator, subtract them by subtracting their numerators.
\frac{18d-15-12d+16}{24d}
Do the multiplications in 3\left(6d-5\right)-4\left(3d-4\right).
\frac{6d+1}{24d}
Combine like terms in 18d-15-12d+16.
\frac{3\left(6d-5\right)}{24d}-\frac{4\left(3d-4\right)}{24d}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8d and 6d is 24d. Multiply \frac{6d-5}{8d} times \frac{3}{3}. Multiply \frac{3d-4}{6d} times \frac{4}{4}.
\frac{3\left(6d-5\right)-4\left(3d-4\right)}{24d}
Since \frac{3\left(6d-5\right)}{24d} and \frac{4\left(3d-4\right)}{24d} have the same denominator, subtract them by subtracting their numerators.
\frac{18d-15-12d+16}{24d}
Do the multiplications in 3\left(6d-5\right)-4\left(3d-4\right).
\frac{6d+1}{24d}
Combine like terms in 18d-15-12d+16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}