Evaluate
\frac{2}{5}=0.4
Factor
\frac{2}{5} = 0.4
Share
Copied to clipboard
\left(6b^{4}\right)^{1}\times \frac{1}{15b^{4}}
Use the rules of exponents to simplify the expression.
6^{1}\left(b^{4}\right)^{1}\times \frac{1}{15}\times \frac{1}{b^{4}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
6^{1}\times \frac{1}{15}\left(b^{4}\right)^{1}\times \frac{1}{b^{4}}
Use the Commutative Property of Multiplication.
6^{1}\times \frac{1}{15}b^{4}b^{4\left(-1\right)}
To raise a power to another power, multiply the exponents.
6^{1}\times \frac{1}{15}b^{4}b^{-4}
Multiply 4 times -1.
6^{1}\times \frac{1}{15}b^{4-4}
To multiply powers of the same base, add their exponents.
6^{1}\times \frac{1}{15}b^{0}
Add the exponents 4 and -4.
6\times \frac{1}{15}b^{0}
Raise 6 to the power 1.
\frac{2}{5}b^{0}
Multiply 6 times \frac{1}{15}.
\frac{2}{5}\times 1
For any term t except 0, t^{0}=1.
\frac{2}{5}
For any term t, t\times 1=t and 1t=t.
\frac{6^{1}b^{4}}{15^{1}b^{4}}
Use the rules of exponents to simplify the expression.
\frac{6^{1}b^{4-4}}{15^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{6^{1}b^{0}}{15^{1}}
Subtract 4 from 4.
\frac{6^{1}}{15^{1}}
For any number a except 0, a^{0}=1.
\frac{2}{5}
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}