Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6a}{a-5}-\frac{3}{6\left(a-1\right)}
Factor 6a-6.
\frac{6a\times 6\left(a-1\right)}{6\left(a-5\right)\left(a-1\right)}-\frac{3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and 6\left(a-1\right) is 6\left(a-5\right)\left(a-1\right). Multiply \frac{6a}{a-5} times \frac{6\left(a-1\right)}{6\left(a-1\right)}. Multiply \frac{3}{6\left(a-1\right)} times \frac{a-5}{a-5}.
\frac{6a\times 6\left(a-1\right)-3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)}
Since \frac{6a\times 6\left(a-1\right)}{6\left(a-5\right)\left(a-1\right)} and \frac{3\left(a-5\right)}{6\left(a-5\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{36a^{2}-36a-3a+15}{6\left(a-5\right)\left(a-1\right)}
Do the multiplications in 6a\times 6\left(a-1\right)-3\left(a-5\right).
\frac{36a^{2}-39a+15}{6\left(a-5\right)\left(a-1\right)}
Combine like terms in 36a^{2}-36a-3a+15.
\frac{3\left(12a^{2}-13a+5\right)}{6\left(a-5\right)\left(a-1\right)}
Factor the expressions that are not already factored in \frac{36a^{2}-39a+15}{6\left(a-5\right)\left(a-1\right)}.
\frac{12a^{2}-13a+5}{2\left(a-5\right)\left(a-1\right)}
Cancel out 3 in both numerator and denominator.
\frac{12a^{2}-13a+5}{2a^{2}-12a+10}
Expand 2\left(a-5\right)\left(a-1\right).