Evaluate
\frac{4a}{5b}
Differentiate w.r.t. a
\frac{4}{5b}
Share
Copied to clipboard
\frac{6a^{5}b^{2}}{5b^{3}\times 4a^{4}}+\frac{a^{2}}{b^{2}}\times \frac{b}{2a}
Multiply \frac{6a^{5}}{5b^{3}} times \frac{b^{2}}{4a^{4}} by multiplying numerator times numerator and denominator times denominator.
\frac{3a}{2\times 5b}+\frac{a^{2}}{b^{2}}\times \frac{b}{2a}
Cancel out 2b^{2}a^{4} in both numerator and denominator.
\frac{3a}{2\times 5b}+\frac{a^{2}b}{b^{2}\times 2a}
Multiply \frac{a^{2}}{b^{2}} times \frac{b}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{3a}{2\times 5b}+\frac{a}{2b}
Cancel out ab in both numerator and denominator.
\frac{3a}{2\times 5b}+\frac{5a}{2\times 5b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 5b and 2b is 2\times 5b. Multiply \frac{a}{2b} times \frac{5}{5}.
\frac{3a+5a}{2\times 5b}
Since \frac{3a}{2\times 5b} and \frac{5a}{2\times 5b} have the same denominator, add them by adding their numerators.
\frac{8a}{2\times 5b}
Combine like terms in 3a+5a.
\frac{4a}{5b}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}