Solve for x
x = \frac{\sqrt{445} + 25}{6} \approx 7.682503852
x=\frac{25-\sqrt{445}}{6}\approx 0.650829482
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 6 - x } { 2 x - 3 } = \frac { x - 9 } { x + 2 }
Share
Copied to clipboard
\left(x+2\right)\left(6-x\right)=\left(2x-3\right)\left(x-9\right)
Variable x cannot be equal to any of the values -2,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(x+2\right), the least common multiple of 2x-3,x+2.
4x-x^{2}+12=\left(2x-3\right)\left(x-9\right)
Use the distributive property to multiply x+2 by 6-x and combine like terms.
4x-x^{2}+12=2x^{2}-21x+27
Use the distributive property to multiply 2x-3 by x-9 and combine like terms.
4x-x^{2}+12-2x^{2}=-21x+27
Subtract 2x^{2} from both sides.
4x-3x^{2}+12=-21x+27
Combine -x^{2} and -2x^{2} to get -3x^{2}.
4x-3x^{2}+12+21x=27
Add 21x to both sides.
25x-3x^{2}+12=27
Combine 4x and 21x to get 25x.
25x-3x^{2}+12-27=0
Subtract 27 from both sides.
25x-3x^{2}-15=0
Subtract 27 from 12 to get -15.
-3x^{2}+25x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 25 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
Square 25.
x=\frac{-25±\sqrt{625+12\left(-15\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-25±\sqrt{625-180}}{2\left(-3\right)}
Multiply 12 times -15.
x=\frac{-25±\sqrt{445}}{2\left(-3\right)}
Add 625 to -180.
x=\frac{-25±\sqrt{445}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{445}-25}{-6}
Now solve the equation x=\frac{-25±\sqrt{445}}{-6} when ± is plus. Add -25 to \sqrt{445}.
x=\frac{25-\sqrt{445}}{6}
Divide -25+\sqrt{445} by -6.
x=\frac{-\sqrt{445}-25}{-6}
Now solve the equation x=\frac{-25±\sqrt{445}}{-6} when ± is minus. Subtract \sqrt{445} from -25.
x=\frac{\sqrt{445}+25}{6}
Divide -25-\sqrt{445} by -6.
x=\frac{25-\sqrt{445}}{6} x=\frac{\sqrt{445}+25}{6}
The equation is now solved.
\left(x+2\right)\left(6-x\right)=\left(2x-3\right)\left(x-9\right)
Variable x cannot be equal to any of the values -2,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(x+2\right), the least common multiple of 2x-3,x+2.
4x-x^{2}+12=\left(2x-3\right)\left(x-9\right)
Use the distributive property to multiply x+2 by 6-x and combine like terms.
4x-x^{2}+12=2x^{2}-21x+27
Use the distributive property to multiply 2x-3 by x-9 and combine like terms.
4x-x^{2}+12-2x^{2}=-21x+27
Subtract 2x^{2} from both sides.
4x-3x^{2}+12=-21x+27
Combine -x^{2} and -2x^{2} to get -3x^{2}.
4x-3x^{2}+12+21x=27
Add 21x to both sides.
25x-3x^{2}+12=27
Combine 4x and 21x to get 25x.
25x-3x^{2}=27-12
Subtract 12 from both sides.
25x-3x^{2}=15
Subtract 12 from 27 to get 15.
-3x^{2}+25x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+25x}{-3}=\frac{15}{-3}
Divide both sides by -3.
x^{2}+\frac{25}{-3}x=\frac{15}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{25}{3}x=\frac{15}{-3}
Divide 25 by -3.
x^{2}-\frac{25}{3}x=-5
Divide 15 by -3.
x^{2}-\frac{25}{3}x+\left(-\frac{25}{6}\right)^{2}=-5+\left(-\frac{25}{6}\right)^{2}
Divide -\frac{25}{3}, the coefficient of the x term, by 2 to get -\frac{25}{6}. Then add the square of -\frac{25}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{3}x+\frac{625}{36}=-5+\frac{625}{36}
Square -\frac{25}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{3}x+\frac{625}{36}=\frac{445}{36}
Add -5 to \frac{625}{36}.
\left(x-\frac{25}{6}\right)^{2}=\frac{445}{36}
Factor x^{2}-\frac{25}{3}x+\frac{625}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{6}\right)^{2}}=\sqrt{\frac{445}{36}}
Take the square root of both sides of the equation.
x-\frac{25}{6}=\frac{\sqrt{445}}{6} x-\frac{25}{6}=-\frac{\sqrt{445}}{6}
Simplify.
x=\frac{\sqrt{445}+25}{6} x=\frac{25-\sqrt{445}}{6}
Add \frac{25}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}