Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{6-p}{\left(p-4\right)\left(-p-4\right)}+\frac{p+2}{p-4}
Factor 16-p^{2}.
\frac{6-p}{\left(p-4\right)\left(-p-4\right)}+\frac{\left(p+2\right)\left(-p-4\right)}{\left(p-4\right)\left(-p-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-4\right)\left(-p-4\right) and p-4 is \left(p-4\right)\left(-p-4\right). Multiply \frac{p+2}{p-4} times \frac{-p-4}{-p-4}.
\frac{6-p+\left(p+2\right)\left(-p-4\right)}{\left(p-4\right)\left(-p-4\right)}
Since \frac{6-p}{\left(p-4\right)\left(-p-4\right)} and \frac{\left(p+2\right)\left(-p-4\right)}{\left(p-4\right)\left(-p-4\right)} have the same denominator, add them by adding their numerators.
\frac{6-p-p^{2}-4p-2p-8}{\left(p-4\right)\left(-p-4\right)}
Do the multiplications in 6-p+\left(p+2\right)\left(-p-4\right).
\frac{-2-7p-p^{2}}{\left(p-4\right)\left(-p-4\right)}
Combine like terms in 6-p-p^{2}-4p-2p-8.
\frac{-2-7p-p^{2}}{-p^{2}+16}
Expand \left(p-4\right)\left(-p-4\right).
\frac{6-p}{\left(p-4\right)\left(-p-4\right)}+\frac{p+2}{p-4}
Factor 16-p^{2}.
\frac{6-p}{\left(p-4\right)\left(-p-4\right)}+\frac{\left(p+2\right)\left(-p-4\right)}{\left(p-4\right)\left(-p-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-4\right)\left(-p-4\right) and p-4 is \left(p-4\right)\left(-p-4\right). Multiply \frac{p+2}{p-4} times \frac{-p-4}{-p-4}.
\frac{6-p+\left(p+2\right)\left(-p-4\right)}{\left(p-4\right)\left(-p-4\right)}
Since \frac{6-p}{\left(p-4\right)\left(-p-4\right)} and \frac{\left(p+2\right)\left(-p-4\right)}{\left(p-4\right)\left(-p-4\right)} have the same denominator, add them by adding their numerators.
\frac{6-p-p^{2}-4p-2p-8}{\left(p-4\right)\left(-p-4\right)}
Do the multiplications in 6-p+\left(p+2\right)\left(-p-4\right).
\frac{-2-7p-p^{2}}{\left(p-4\right)\left(-p-4\right)}
Combine like terms in 6-p-p^{2}-4p-2p-8.
\frac{-2-7p-p^{2}}{-p^{2}+16}
Expand \left(p-4\right)\left(-p-4\right).