Solve for y
y=\frac{12}{25}=0.48
Graph
Share
Copied to clipboard
6-5y=-9\left(-\frac{2}{5}\right)
Multiply both sides by -\frac{2}{5}.
6-5y=\frac{-9\left(-2\right)}{5}
Express -9\left(-\frac{2}{5}\right) as a single fraction.
6-5y=\frac{18}{5}
Multiply -9 and -2 to get 18.
-5y=\frac{18}{5}-6
Subtract 6 from both sides.
-5y=\frac{18}{5}-\frac{30}{5}
Convert 6 to fraction \frac{30}{5}.
-5y=\frac{18-30}{5}
Since \frac{18}{5} and \frac{30}{5} have the same denominator, subtract them by subtracting their numerators.
-5y=-\frac{12}{5}
Subtract 30 from 18 to get -12.
y=\frac{-\frac{12}{5}}{-5}
Divide both sides by -5.
y=\frac{-12}{5\left(-5\right)}
Express \frac{-\frac{12}{5}}{-5} as a single fraction.
y=\frac{-12}{-25}
Multiply 5 and -5 to get -25.
y=\frac{12}{25}
Fraction \frac{-12}{-25} can be simplified to \frac{12}{25} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}