Solve for x
x = \frac{\sqrt{5}}{2} \approx 1.118033989
x = -\frac{\sqrt{5}}{2} \approx -1.118033989
Graph
Share
Copied to clipboard
\left(2x+3\right)\left(6-4x\right)=\left(4x-2\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(2x-1\right)\left(2x+3\right), the least common multiple of 4x-2,2x+3.
-8x^{2}+18=\left(4x-2\right)\left(2x+1\right)
Use the distributive property to multiply 2x+3 by 6-4x and combine like terms.
-8x^{2}+18=8x^{2}-2
Use the distributive property to multiply 4x-2 by 2x+1 and combine like terms.
-8x^{2}+18-8x^{2}=-2
Subtract 8x^{2} from both sides.
-16x^{2}+18=-2
Combine -8x^{2} and -8x^{2} to get -16x^{2}.
-16x^{2}=-2-18
Subtract 18 from both sides.
-16x^{2}=-20
Subtract 18 from -2 to get -20.
x^{2}=\frac{-20}{-16}
Divide both sides by -16.
x^{2}=\frac{5}{4}
Reduce the fraction \frac{-20}{-16} to lowest terms by extracting and canceling out -4.
x=\frac{\sqrt{5}}{2} x=-\frac{\sqrt{5}}{2}
Take the square root of both sides of the equation.
\left(2x+3\right)\left(6-4x\right)=\left(4x-2\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(2x-1\right)\left(2x+3\right), the least common multiple of 4x-2,2x+3.
-8x^{2}+18=\left(4x-2\right)\left(2x+1\right)
Use the distributive property to multiply 2x+3 by 6-4x and combine like terms.
-8x^{2}+18=8x^{2}-2
Use the distributive property to multiply 4x-2 by 2x+1 and combine like terms.
-8x^{2}+18-8x^{2}=-2
Subtract 8x^{2} from both sides.
-16x^{2}+18=-2
Combine -8x^{2} and -8x^{2} to get -16x^{2}.
-16x^{2}+18+2=0
Add 2 to both sides.
-16x^{2}+20=0
Add 18 and 2 to get 20.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 20}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)\times 20}}{2\left(-16\right)}
Square 0.
x=\frac{0±\sqrt{64\times 20}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{0±\sqrt{1280}}{2\left(-16\right)}
Multiply 64 times 20.
x=\frac{0±16\sqrt{5}}{2\left(-16\right)}
Take the square root of 1280.
x=\frac{0±16\sqrt{5}}{-32}
Multiply 2 times -16.
x=-\frac{\sqrt{5}}{2}
Now solve the equation x=\frac{0±16\sqrt{5}}{-32} when ± is plus.
x=\frac{\sqrt{5}}{2}
Now solve the equation x=\frac{0±16\sqrt{5}}{-32} when ± is minus.
x=-\frac{\sqrt{5}}{2} x=\frac{\sqrt{5}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}