Solve for x
x\neq 2
Graph
Share
Copied to clipboard
-\left(6-3x\right)=3\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-2\right), the least common multiple of 5-5x+5,5.
-6+3x=3\left(x-2\right)
To find the opposite of 6-3x, find the opposite of each term.
-6+3x=3x-6
Use the distributive property to multiply 3 by x-2.
-6+3x-3x=-6
Subtract 3x from both sides.
-6=-6
Combine 3x and -3x to get 0.
\text{true}
Compare -6 and -6.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}