Solve for a (complex solution)
a=-\frac{-2ex+3x+8-6e}{3x-2}
x\neq -3\text{ and }x\neq \frac{2}{3}
Solve for a
a=-\frac{-2ex+3x+8-6e}{3x-2}
x\neq \frac{2}{3}\text{ and }x\neq -3
Solve for x
x=-\frac{2\left(-a+4-3e\right)}{3a+3-2e}
a\neq -\frac{1}{11}\text{ and }a\neq \frac{2e}{3}-1
Graph
Share
Copied to clipboard
\left(x+3\right)\left(6-2e\right)=\left(3x-2\right)\left(1-a\right)+12
Multiply both sides of the equation by \left(3x-2\right)\left(x+3\right), the least common multiple of 3x-2,x+3,3x^{2}+7x-6.
6x-2xe+18-6e=\left(3x-2\right)\left(1-a\right)+12
Use the distributive property to multiply x+3 by 6-2e.
6x-2xe+18-6e=3x-3ax-2+2a+12
Use the distributive property to multiply 3x-2 by 1-a.
6x-2xe+18-6e=3x-3ax+10+2a
Add -2 and 12 to get 10.
3x-3ax+10+2a=6x-2xe+18-6e
Swap sides so that all variable terms are on the left hand side.
-3ax+10+2a=6x-2xe+18-6e-3x
Subtract 3x from both sides.
-3ax+10+2a=3x-2xe+18-6e
Combine 6x and -3x to get 3x.
-3ax+2a=3x-2xe+18-6e-10
Subtract 10 from both sides.
-3ax+2a=3x-2xe+8-6e
Subtract 10 from 18 to get 8.
\left(-3x+2\right)a=3x-2xe+8-6e
Combine all terms containing a.
\left(2-3x\right)a=-2ex+3x+8-6e
The equation is in standard form.
\frac{\left(2-3x\right)a}{2-3x}=\frac{-2ex+3x+8-6e}{2-3x}
Divide both sides by 2-3x.
a=\frac{-2ex+3x+8-6e}{2-3x}
Dividing by 2-3x undoes the multiplication by 2-3x.
\left(x+3\right)\left(6-2e\right)=\left(3x-2\right)\left(1-a\right)+12
Multiply both sides of the equation by \left(3x-2\right)\left(x+3\right), the least common multiple of 3x-2,x+3,3x^{2}+7x-6.
6x-2xe+18-6e=\left(3x-2\right)\left(1-a\right)+12
Use the distributive property to multiply x+3 by 6-2e.
6x-2xe+18-6e=3x-3ax-2+2a+12
Use the distributive property to multiply 3x-2 by 1-a.
6x-2xe+18-6e=3x-3ax+10+2a
Add -2 and 12 to get 10.
3x-3ax+10+2a=6x-2xe+18-6e
Swap sides so that all variable terms are on the left hand side.
-3ax+10+2a=6x-2xe+18-6e-3x
Subtract 3x from both sides.
-3ax+10+2a=3x-2xe+18-6e
Combine 6x and -3x to get 3x.
-3ax+2a=3x-2xe+18-6e-10
Subtract 10 from both sides.
-3ax+2a=3x-2xe+8-6e
Subtract 10 from 18 to get 8.
\left(-3x+2\right)a=3x-2xe+8-6e
Combine all terms containing a.
\left(2-3x\right)a=-2ex+3x+8-6e
The equation is in standard form.
\frac{\left(2-3x\right)a}{2-3x}=\frac{-2ex+3x+8-6e}{2-3x}
Divide both sides by -3x+2.
a=\frac{-2ex+3x+8-6e}{2-3x}
Dividing by -3x+2 undoes the multiplication by -3x+2.
\left(x+3\right)\left(6-2e\right)=\left(3x-2\right)\left(1-a\right)+12
Variable x cannot be equal to any of the values -3,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+3\right), the least common multiple of 3x-2,x+3,3x^{2}+7x-6.
6x-2xe+18-6e=\left(3x-2\right)\left(1-a\right)+12
Use the distributive property to multiply x+3 by 6-2e.
6x-2xe+18-6e=3x-3xa-2+2a+12
Use the distributive property to multiply 3x-2 by 1-a.
6x-2xe+18-6e=3x-3xa+10+2a
Add -2 and 12 to get 10.
6x-2xe+18-6e-3x=-3xa+10+2a
Subtract 3x from both sides.
3x-2xe+18-6e=-3xa+10+2a
Combine 6x and -3x to get 3x.
3x-2xe+18-6e+3xa=10+2a
Add 3xa to both sides.
3x-2xe-6e+3xa=10+2a-18
Subtract 18 from both sides.
3x-2xe-6e+3xa=-8+2a
Subtract 18 from 10 to get -8.
3x-2xe+3xa=-8+2a+6e
Add 6e to both sides.
\left(3-2e+3a\right)x=-8+2a+6e
Combine all terms containing x.
\left(3a+3-2e\right)x=2a+6e-8
The equation is in standard form.
\frac{\left(3a+3-2e\right)x}{3a+3-2e}=\frac{2a+6e-8}{3a+3-2e}
Divide both sides by 3+3a-2e.
x=\frac{2a+6e-8}{3a+3-2e}
Dividing by 3+3a-2e undoes the multiplication by 3+3a-2e.
x=\frac{2\left(a+3e-4\right)}{3a+3-2e}
Divide -8+2a+6e by 3+3a-2e.
x=\frac{2\left(a+3e-4\right)}{3a+3-2e}\text{, }x\neq -3\text{ and }x\neq \frac{2}{3}
Variable x cannot be equal to any of the values -3,\frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}