Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{9x^{2}-6x+1}-\frac{3}{x+1}-\frac{1}{3x^{2}+2x-1}
Subtract 2 from 6 to get 4.
\frac{4}{\left(3x-1\right)^{2}}-\frac{3}{x+1}-\frac{1}{3x^{2}+2x-1}
Factor 9x^{2}-6x+1.
\frac{4\left(x+1\right)}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{3\left(3x-1\right)^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3x-1\right)^{2} and x+1 is \left(x+1\right)\left(3x-1\right)^{2}. Multiply \frac{4}{\left(3x-1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{3}{x+1} times \frac{\left(3x-1\right)^{2}}{\left(3x-1\right)^{2}}.
\frac{4\left(x+1\right)-3\left(3x-1\right)^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
Since \frac{4\left(x+1\right)}{\left(x+1\right)\left(3x-1\right)^{2}} and \frac{3\left(3x-1\right)^{2}}{\left(x+1\right)\left(3x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4-27x^{2}+18x-3}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
Do the multiplications in 4\left(x+1\right)-3\left(3x-1\right)^{2}.
\frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
Combine like terms in 4x+4-27x^{2}+18x-3.
\frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{\left(3x-1\right)\left(x+1\right)}
Factor 3x^{2}+2x-1.
\frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{3x-1}{\left(x+1\right)\left(3x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(3x-1\right)^{2} and \left(3x-1\right)\left(x+1\right) is \left(x+1\right)\left(3x-1\right)^{2}. Multiply \frac{1}{\left(3x-1\right)\left(x+1\right)} times \frac{3x-1}{3x-1}.
\frac{22x+1-27x^{2}-\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)^{2}}
Since \frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}} and \frac{3x-1}{\left(x+1\right)\left(3x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{22x+1-27x^{2}-3x+1}{\left(x+1\right)\left(3x-1\right)^{2}}
Do the multiplications in 22x+1-27x^{2}-\left(3x-1\right).
\frac{19x+2-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}
Combine like terms in 22x+1-27x^{2}-3x+1.
\frac{19x+2-27x^{2}}{9x^{3}+3x^{2}-5x+1}
Expand \left(x+1\right)\left(3x-1\right)^{2}.
\frac{4}{9x^{2}-6x+1}-\frac{3}{x+1}-\frac{1}{3x^{2}+2x-1}
Subtract 2 from 6 to get 4.
\frac{4}{\left(3x-1\right)^{2}}-\frac{3}{x+1}-\frac{1}{3x^{2}+2x-1}
Factor 9x^{2}-6x+1.
\frac{4\left(x+1\right)}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{3\left(3x-1\right)^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3x-1\right)^{2} and x+1 is \left(x+1\right)\left(3x-1\right)^{2}. Multiply \frac{4}{\left(3x-1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{3}{x+1} times \frac{\left(3x-1\right)^{2}}{\left(3x-1\right)^{2}}.
\frac{4\left(x+1\right)-3\left(3x-1\right)^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
Since \frac{4\left(x+1\right)}{\left(x+1\right)\left(3x-1\right)^{2}} and \frac{3\left(3x-1\right)^{2}}{\left(x+1\right)\left(3x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4-27x^{2}+18x-3}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
Do the multiplications in 4\left(x+1\right)-3\left(3x-1\right)^{2}.
\frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{3x^{2}+2x-1}
Combine like terms in 4x+4-27x^{2}+18x-3.
\frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{1}{\left(3x-1\right)\left(x+1\right)}
Factor 3x^{2}+2x-1.
\frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}-\frac{3x-1}{\left(x+1\right)\left(3x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(3x-1\right)^{2} and \left(3x-1\right)\left(x+1\right) is \left(x+1\right)\left(3x-1\right)^{2}. Multiply \frac{1}{\left(3x-1\right)\left(x+1\right)} times \frac{3x-1}{3x-1}.
\frac{22x+1-27x^{2}-\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)^{2}}
Since \frac{22x+1-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}} and \frac{3x-1}{\left(x+1\right)\left(3x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{22x+1-27x^{2}-3x+1}{\left(x+1\right)\left(3x-1\right)^{2}}
Do the multiplications in 22x+1-27x^{2}-\left(3x-1\right).
\frac{19x+2-27x^{2}}{\left(x+1\right)\left(3x-1\right)^{2}}
Combine like terms in 22x+1-27x^{2}-3x+1.
\frac{19x+2-27x^{2}}{9x^{3}+3x^{2}-5x+1}
Expand \left(x+1\right)\left(3x-1\right)^{2}.