Solve for y
y=\frac{9}{50}=0.18
Graph
Share
Copied to clipboard
-\left(6-10y\right)=6\left(\frac{1}{5}-5y\right)
Multiply both sides of the equation by 12, the least common multiple of -12,2.
-6-\left(-10y\right)=6\left(\frac{1}{5}-5y\right)
To find the opposite of 6-10y, find the opposite of each term.
-6+10y=6\left(\frac{1}{5}-5y\right)
The opposite of -10y is 10y.
-6+10y=6\times \frac{1}{5}-30y
Use the distributive property to multiply 6 by \frac{1}{5}-5y.
-6+10y=\frac{6}{5}-30y
Multiply 6 and \frac{1}{5} to get \frac{6}{5}.
-6+10y+30y=\frac{6}{5}
Add 30y to both sides.
-6+40y=\frac{6}{5}
Combine 10y and 30y to get 40y.
40y=\frac{6}{5}+6
Add 6 to both sides.
40y=\frac{6}{5}+\frac{30}{5}
Convert 6 to fraction \frac{30}{5}.
40y=\frac{6+30}{5}
Since \frac{6}{5} and \frac{30}{5} have the same denominator, add them by adding their numerators.
40y=\frac{36}{5}
Add 6 and 30 to get 36.
y=\frac{\frac{36}{5}}{40}
Divide both sides by 40.
y=\frac{36}{5\times 40}
Express \frac{\frac{36}{5}}{40} as a single fraction.
y=\frac{36}{200}
Multiply 5 and 40 to get 200.
y=\frac{9}{50}
Reduce the fraction \frac{36}{200} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}