Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(6-\sqrt{3}\right)\left(2-\sqrt{7}\right)}{\left(2+\sqrt{7}\right)\left(2-\sqrt{7}\right)}
Rationalize the denominator of \frac{6-\sqrt{3}}{2+\sqrt{7}} by multiplying numerator and denominator by 2-\sqrt{7}.
\frac{\left(6-\sqrt{3}\right)\left(2-\sqrt{7}\right)}{2^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(2+\sqrt{7}\right)\left(2-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-\sqrt{3}\right)\left(2-\sqrt{7}\right)}{4-7}
Square 2. Square \sqrt{7}.
\frac{\left(6-\sqrt{3}\right)\left(2-\sqrt{7}\right)}{-3}
Subtract 7 from 4 to get -3.
\frac{12-6\sqrt{7}-2\sqrt{3}+\sqrt{3}\sqrt{7}}{-3}
Apply the distributive property by multiplying each term of 6-\sqrt{3} by each term of 2-\sqrt{7}.
\frac{12-6\sqrt{7}-2\sqrt{3}+\sqrt{21}}{-3}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\frac{-12+6\sqrt{7}+2\sqrt{3}-\sqrt{21}}{3}
Multiply both numerator and denominator by -1.